981 resultados para flue dust
Resumo:
The current-driven dust ion-acoustic instability in a collisional dusty plasma is studied. The effects of dust-charge variation, electron and ion capture by the dust grains, as well as various dissipative mechanisms leading to the changes of the particles momenta, are taken into account. It is shown that the threshold for the excitation of the dust ion-acoustic waves can be high because of the large dissipation rate induced by the dusts. © 1999 American Institute of Physics.
Resumo:
Blasting is an integral part of large-scale open cut mining that often occurs in close proximity to population centers and often results in the emission of particulate material and gases potentially hazardous to health. Current air quality monitoring methods rely on limited numbers of fixed sampling locations to validate a complex fluid environment and collect sufficient data to confirm model effectiveness. This paper describes the development of a methodology to address the need of a more precise approach that is capable of characterizing blasting plumes in near-real time. The integration of the system required the modification and integration of an opto-electrical dust sensor, SHARP GP2Y10, into a small fixed-wing and multi-rotor copter, resulting in the collection of data streamed during flight. The paper also describes the calibration of the optical sensor with an industry grade dust-monitoring device, Dusttrak 8520, demonstrating a high correlation between them, with correlation coefficients (R2) greater than 0.9. The laboratory and field tests demonstrate the feasibility of coupling the sensor with the UAVs. However, further work must be done in the areas of sensor selection and calibration as well as flight planning.
Resumo:
PBDE concentrations are higher in children compared to adults with exposure suggested to include dust ingestion. Besides the home environment, children spend a great deal of time in school classrooms which may be a source of exposure. As part of the “Ultrafine Particles from Traffic Emissions and Children's Health (UPTECH)” project, dust samples (n=28) were obtained in 2011/12 from 10 Brisbane, Australia metropolitan schools and analysed using GC and LC–MS for polybrominated diphenyl ethers (PBDEs) -17, -28, -47, -49, -66, -85, -99, -100, -154, -183, and -209. Σ11PBDEs ranged from 11–2163 ng/g dust; with a mean and median of 600 and 469 ng/g dust, respectively. BDE-209 (range n.d. −2034 ng/g dust; mean (median) 402 (217) ng/g dust) was the dominant congener in most classrooms. Frequencies of detection were 96%, 96%, 39% and 93% for BDE-47, -99, -100 and -209, respectively. No seasonal variations were apparent and from each of the two schools where XRF measurements were carried out, only two classroom items had detectable bromine. PBDE intake for 8–11 year olds can be estimated at 0.094 ng/day BDE-47; 0.187 ng/day BDE-99 and 0.522 ng/day BDE-209 as a result of ingestion of classroom dust, based on mean PBDE concentrations. The 97.5% percentile intake is estimated to be 0.62, 1.03 and 2.14 ng/day for BDEs-47, -99 and -209, respectively. These PBDE concentrations in dust from classrooms, which are higher than in Australian homes, may explain some of the higher body burden of PBDEs in children compared to adults when taking into consideration age-dependant behaviours which increase dust ingestion.
Resumo:
Road deposited dust is a complex mixture of pollutants derived from a wide range of sources. Accurate identification of these sources is seminal for effective source-oriented control measures. A range of techniques such as enrichment factor analysis (EF), principal component analysis (PCA) and hierarchical cluster analysis (HCA) are available for identifying sources of complex mixtures. However, they have multiple deficiencies when applied individually. This study presents an approach for the effective utilisation of EF, PCA and HCA for source identification, so that their specific deficiencies on an individual basis are eliminated. EF analysis confirmed the non-soil origin of metals such as Na, Cu, Cd, Zn, Sn, K, Ca, Sb, Ba, Ti, Ni and Mo providing guidance in the identification of anthropogenic sources. PCA and HCA identified four sources, with soil and asphalt wear in combination being the most prominent sources. Other sources were tyre wear, brake wear and sea salt.
Resumo:
The further development of Taqman quantitative real-time PCR (qPCR) assays for the absolute quantitation of Marek's disease virus serotype 1 (MDV1) and Herpesvirus of turkeys (HVT) viruses is described and the sensitivity and reproducibility of each assay reported. Using plasmid DNA copies, the lower limit of detection was determined to be 5 copies for the MDV1 assay and 75 copies for the HVT assay. Both assays were found to be highly reproducible for Ct values and calculated copy numbers with mean intra- and inter-assay coefficients of variation being less than 5% for Ct and 20% for calculated copy number. The genome copy number of MDV1 and HVT viruses was quantified in PBL and feather tips from experimentally infected chickens, and field poultry dust samples. Parallelism was demonstrated between the plasmid-based standard curves, and standard curves derived from infected spleen material containing both viral and host DNA, allowing the latter to be used for absolute quantification. These methods should prove useful for the reliable differentiation and absolute quantitation of MDV1 and HVT viruses in a wide range of samples.
Resumo:
An observational study was undertaken to measure odour and dust (PM10 and PM2.5) emission rates and identify non-methane volatile organic compounds (NMVOCs) and odorants in the exhaust air from two tunnel-ventilated layer-chicken sheds that were configured with multi-tiered cages and manure belts. The study sites were located in south-eastern Queensland and the West Gippsland region of Victoria, Australia. Samples were collected in summer and winter on sequential days across the manure-belt cleaning cycle. Odour emissions ranged from 58 to 512 ou/s per 1000 birds (0.03-0.27 ou/s.kg) and dust emission rates ranged 0.014-0.184 mg/s per 1000 birds for PM10 and 0.001-0.190 mg/s per 1000 birds for PM2.5. Twenty NMVOCs were identified, including three that were also identified as odorants using thermal desorption-gas chromatography-mass spectrometry/olfactometry analysis. Odour emission rates were observed to vary with the amount of manure accumulation on the manure belts, being lowest 2-4 days after removing manure. Odour emission rates were also observed to vary with diurnal and seasonal changes in ventilation rate. Dust emissions were observed to increase with ventilation rate but not with manure accumulation. Some NMVOCs were identified at both farms and in different seasons whereas others were observed only at one farm or in one season, indicating that odorant composition was influenced by farm-specific practices and season.
Resumo:
Vehicles affect the concentrations of ambient airborne particles through exhaust emissions, but particles are also formed in the mechanical processes in the tire-road interface, brakes, and engine. Particles deposited on or in the vicinity of the road may be re-entrained, or resuspended, into air through vehicle-induced turbulence and shearing stress of the tires. A commonly used term for these particles is road dust . The processes affecting road dust emissions are complex and currently not well known. Road dust has been acknowledged as a dominant source of PM10 especially during spring in the sub-arctic urban areas, e.g. in Scandinavia, Finland, North America and Japan. The high proportion of road dust in sub-arctic regions of the world has been linked to the snowy winter conditions that make it necessary to use traction control methods. Traction control methods include dispersion of traction sand, melting of ice with brine solutions, and equipping the tires with either metal studs (studded winter tires), snow chains, or special tire design (friction tires). Several of these methods enhance the formation of mineral particles from pavement wear and/or from traction sand that accumulate in the road environment during winter. When snow and ice melt and surfaces dry out, traffic-induced turbulence makes some of the particles airborne. A general aim of this study was to study processes and factors underlying and affecting the formation and emissions of road dust from paved road surfaces. Special emphasis was placed on studying particle formation and sources during tire road interaction, especially when different applications of traction control, namely traction sanding and/or winter tires were in use. Respirable particles with aerodynamic diameter below 10 micrometers (PM10) have been the main concern, but other size ranges and particle size distributions were also studied. The following specific research questions were addressed: i) How do traction sanding and physical properties of the traction sand aggregate affect formation of road dust? ii) How do studded tires affect the formation of road dust when compared with friction tires? iii) What are the composition and sources of airborne road dust in a road simulator and during a springtime road dust episode in Finland? iv) What is the size distribution of abrasion particles from tire-road interaction? The studies were conducted both in a road simulator and in field conditions. The test results from the road simulator showed that traction sanding increased road dust emissions, and that the effect became more dominant with increasing sand load. A high percentage of fine-grained anti-skid aggregate of overall grading increased the PM10 concentrations. Anti-skid aggregate with poor resistance to fragmentation resulted in higher PM levels compared with the other aggregates, and the effect became more significant with higher aggregate loads. Glaciofluvial aggregates tended to cause higher particle concentrations than crushed rocks with good fragmentation resistance. Comparison of tire types showed that studded tires result in higher formation of PM emissions compared with friction tires. The same trend between the tires was present in the tests with and without anti-skid aggregate. This finding applies to test conditions of the road simulator with negligible resuspension. Source and composition analysis showed that the particles in the road simulator were mainly minerals and originated from both traction sand and pavement aggregates. A clear contribution of particles from anti-skid aggregate to ambient PM and dust deposition was also observed in urban conditions. The road simulator results showed that the interaction between tires, anti-skid aggregate and road surface is important in dust production and the relative contributions of these sources depend on their properties. Traction sand grains are fragmented into smaller particles under the tires, but they also wear the pavement aggregate. Therefore particles from both aggregates are observed. The mass size distribution of traction sand and pavement wear particles was mainly coarse, but fine and submicron particles were also present.
Resumo:
Carbon particles synthesized by acetylene pyrolysis in a porous graphite reactor have been investigated. The intimate chemical and physical structures of the particles were probed by proton nuclear magnetic resonance spectroscopy, infrared Fourier transform spectroscopy and X-ray diffraction. The analysis points towards a chemical structure composed of soluble low-mass aromatics surrounding small insoluble larger aromatic islands bridged by aliphatic groups. The diffraction profile indicates that the particles are mostly amorphous with small crystalline domains of not, vert, similar6.5 Å composed of a few stacked graphene layers. The properties of these particles are compared with these obtained with other types of production methods such as laser pyrolysis and combustion flames. The results are briefly discussed in the context of the evolution of infrared interstellar emitters. Possible uses of the reactor are proposed.
Resumo:
A new approach based on finite difference method, is proposed for the simulation of electrical conditions in a dc energized wire-duct electrostatic precipitator with and without dust loading. Simulated voltage-curren characteristics with and without dust loading were compared with the measured characteristics for analyzing the performance of a precipitator. The simple finite difference method gives sufficiently accurate results with reduced mesh size. The results for dust free simulation were validated with published experimental data. Further measurements were conducted at a thermal power plant in India and the results compares well with the measured ones.
Resumo:
Interstellar clouds are not featureless, but show quite complex internal structures of filaments and clumps when observed with high enough resolution. These structures have been generated by 1) turbulent motions driven mainly by supernovae, 2) magnetic fields working on the ions and, through neutral-ion collisions, on neutral gas as well, and 3) self-gravity pulling a dense clump together to form a new star. The study of the cloud structure gives us information on the relative importance of each of these mechanisms, and helps us to gain a better understanding of the details of the star formation process. Interstellar dust is often used as a tracer for the interstellar gas which forms the bulk of the interstellar matter. Some of the methods that are used to derive the column density are summarized in this thesis. A new method, which uses the scattered light to map the column density in large fields with high spatial resolution, is introduced. This thesis also takes a look at the grain alignment with respect to the magnetic fields. The aligned grains give rise to the polarization of starlight and dust emission, thus revealing the magnetic field. The alignment mechanisms have been debated for the last half century. The strongest candidate at present is the radiative torques mechanism. In the first four papers included in this thesis, the scattered light method of column density estimation is formulated, tested in simulations, and finally used to obtain a column density map from observations. They demonstrate that the scattered light method is a very useful and reliable tool in column density estimation, and is able to provide higher resolution than the near-infrared color excess method. These two methods are complementary. The derived column density maps are also used to gain information on the dust emissivity within the observed cloud. The two final papers present simulations of polarized thermal dust emission assuming that the alignment happens by the radiative torques mechanism. We show that the radiative torques can explain the observed decline of the polarization degree towards dense cores. Furthermore, the results indicate that the dense cores themselves might not contribute significantly to the polarized signal, and hence one needs to be careful when interpreting the observations and deriving the magnetic field.
Resumo:
New stars in galaxies form in dense, molecular clouds of the interstellar medium. Measuring how the mass is distributed in these clouds is of crucial importance for the current theories of star formation. This is because several open issues in them, such as the strength of different mechanism regulating star formation and the origin of stellar masses, can be addressed using detailed information on the cloud structure. Unfortunately, quantifying the mass distribution in molecular clouds accurately over a wide spatial and dynamical range is a fundamental problem in the modern astrophysics. This thesis presents studies examining the structure of dense molecular clouds and the distribution of mass in them, with the emphasis on nearby clouds that are sites of low-mass star formation. In particular, this thesis concentrates on investigating the mass distributions using the near infrared dust extinction mapping technique. In this technique, the gas column densities towards molecular clouds are determined by examining radiation from the stars that shine through the clouds. In addition, the thesis examines the feasibility of using a similar technique to derive the masses of molecular clouds in nearby external galaxies. The papers presented in this thesis demonstrate how the near infrared dust extinction mapping technique can be used to extract detailed information on the mass distribution in nearby molecular clouds. Furthermore, such information is used to examine characteristics crucial for the star formation in the clouds. Regarding the use of extinction mapping technique in nearby galaxies, the papers of this thesis show that deriving the masses of molecular clouds using the technique suffers from strong biases. However, it is shown that some structural properties can still be examined with the technique.
Resumo:
The inertial impaction of Lycopodium spores on single wires lying transverse to the direction of flow has been studied. The equations of particle motion in a potential flow field have been modified for the case when Stokes' law is inapplicable. Solutions to the above equations have been obtained by digital computation. Rec, the Reynolds number based on cylinder diameter, varied from 4 to 240; particle trajectories in a flow field at Rec = 10 have been determined for inertia parameter K = 1, 2, 4, 6, and 10. Ten trajectories were developed for the above cases by the numerical stepwise method. Experiments were performed by depositing Lycopodium spores on adhesive-coated wires of various diameters and at different velocities. The weight of dust deposited was determined with a microbalance. The experimental conditions were:. Wire diameters: 345, 457, 1500 μ. Particle diameter: 35 μ. Air velocities: 20-250 cm/sec. Inertia parameter: 1-60. The particle was considered as a point mass in the theoretical analysis. But in the experiments the ratio of particle size to wire size was not negligible (rp/rc = 0·1) and hence the effect of finite size of particle on collection efficiency due to the direct interception effect has been estimated. The effect of particle size distribution on collection efficiency has also been estimated. The experimental efficiencies obtained compare well with the calculated efficiencies at Rec = 10 when direct interception is taken into account.