999 resultados para flow instability


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The question of linear sheared-disturbance evolution in constant-shear parallel flow is here reexamined with regard to the temporary-amplification phenomenon noted first by Orr in 1907. The results apply directly to Rossby waves on a beta-plane, and are also relevant to the Eady model of baroclinic instability. It is shown that an isotropic initial distribution of standing waves maintains a constant energy level throughout the shearing process, the amplification of some waves being precisely balanced by the decay of the others. An expression is obtained for the energy of a distribution of disturbances whose wavevectors lie within a given angular wedge and an upper bound derived. It is concluded that the case for ubiquitous amplification made in recent studies may have been somewhat overstated: while carefully-chosen individual Fourier components can amplify considerably before they decay. a general distribution will tend to exhibit little or no amplification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study is made of the zonal-mean motions induced by a growing baroclinic wave in several contexts, under the framework of three different analysis schemes: the conventional Eulerian mean (EM), the transformed Eulerian mean (TEM), and the generalized Lagrangian mean (GLM). The effect of meridional shear in the initial jet on these induced mean motions is considered by treating the instability problem in the context of the two-layer model. The conceptual simplicity of the TEM formulation is shown to be useful in diagnosing the dynamics of instability, much as it has been found helpful in many problems of wave, mean-flow interaction. In addition, it is found that the TEM vertical velocity is a very good indicator of the GLM vertical velocity. However, the GLM meridional velocity is always convergent towards the centre of instability activity, and is not at all well represented by the nondivergent TEM meridional velocity. In comparing the results with Uryu's (1979) calculation of the GLM circulation induced by a growing Eady wave, it is found that the inclusion of meridional jet shear in the present work leads to some strikingly different effects in the GLM zonal wind acceleration. In the case of pure baroclinic instability treated by Uryu, the Eulerian and Stokes accelerations nearly cancel each other in the centre of the channel, leaving a weak Lagrangian acceleration opposed to the Eulerian one. In the more general case of mixed baroclinic-barotropic instability, however, the Eulerian and Stokes accelerations can reinforce one another, leading to a very strong Lagrangian zonal wind

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The heat and mass balance of the Arctic Ocean is very sensitive to the growth and decay of sea ice and the interaction between the heat and salt fields in the oceanic boundary layer. The hydraulic roughness of sea ice controls the detailed nature of turbulent fluxes in the boundary layer and hence is an important ingredient in model parameterizations. We describe a novel mechanism for the generation of corrugations of the sea ice–ocean interface, present a mathematical analysis elucidating the mechanism, and present numerical calculations for geophysically relevant conditions. The mechanism relies on brine flows developing in the sea ice due to Bernoulli suction by flow of ocean past the interface. For oceanic shears at the ice interface of 0.2 s−1, we expect the corrugations to form with a wavelength dependent upon the permeability structure of the sea ice which is described herein. The mechanism should be particularly important during sea ice formation in wind-maintained coastal polynyas and in leads. This paper applies our earlier analyses of the fundamental instability to field conditions and extends it to take account of the anisotropic and heterogeneous permeability of sea ice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate baroclinic instability in flow conditions relevant to hot extrasolar planets. The instability is important for transporting and mixing heat, as well as for influencing large-scale variability on the planets. Both linear normal mode analysis and non-linear initial value cal- culations are carried out – focusing on the freely-evolving, adiabatic situation. Using a high- resolution general circulation model (GCM) which solves the traditional primitive equations, we show that large-scale jets similar to those observed in current GCM simulations of hot ex- trasolar giant planets are likely to be baroclinically unstable on a timescale of few to few tens of planetary rotations, generating cyclones and anticyclones that drive weather systems. The growth rate and scale of the most unstable mode obtained in the linear analysis are in qual- itative, good agreement with the full non-linear calculations. In general, unstable jets evolve differently depending on their signs (eastward or westward), due to the change in sign of the jet curvature. For jets located at or near the equator, instability is strong at the flanks – but not at the core. Crucially, the instability is either poorly or not at all captured in simulations with low resolution and/or high artificial viscosity. Hence, the instability has not been observed or emphasized in past circulation studies of hot extrasolar planets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The one-fluid magnetohydrodynamic (MHD) theory of magnetorotational instability (MRI) in an ideal plasma is presented. The theory predicts the possibility of MRI for arbitrary 0, where 0 is the ratio of the plasma pressure to the magnetic field pressure. The kinetic theory of MRI in a collisionless plasma is developed. It is demonstrated that as in the ideal MHD, MRI can occur in such a plasma for arbitrary P. The mechanism of MRI is discussed; it is shown that the instability appears because of a perturbed parallel electric field. The electrodynamic description of MRI is formulated under the assumption that the dispersion relation is expressed in terms of the permittivity tensor; general properties of this tensor are analyzed. It is shown to be separated into the nonrotational and rotational parts. With this in mind, the first step for incorporation of MRI into the general theory of plasma instabilities is taken. The rotation effects on Alfven waves are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temporally-growing frontal meandering and occasional eddy-shedding is observed in the Brazil Current (BC) as it flows adjacent to the Brazilian Coast. No study of the dynamics of this phenomenon has been conducted to date in the region between 22 degrees S and 25 degrees S. Within this latitude range, the flow over the intermediate continental slope is marked by a current inversion at a depth that is associated with the Intermediate Western Boundary Current (IWBC). A time series analysis of 10-current-meter mooring data was used to describe a mean vertical profile for the BC-IWBC jet and a typical meander vertical structure. The latter was obtained by an empirical orthogonal function (EOF) analysis that showed a single mode explaining 82% of the total variance. This mode structure decayed sharply with depth, revealing that the meandering is much more vigorous within the BC domain than it is in the IWBC region. As the spectral analysis of the mode amplitude time series revealed no significant periods, we searched for dominant wavelengths. This search was done via a spatial EOF analysis on 51 thermal front patterns derived from digitized AVHRR images. Four modes were statistically significant at the 95% confidence level. Modes 3 and 4, which together explained 18% of the total variance, are associated with 266 and 338-km vorticity waves, respectively. With this new information derived from the data, the [Johns, W.E., 1988. One-dimensional baroclinically unstable waves on the Gulf Stream potential vorticity gradient near Cape Hatteras. Dyn. Atmos. Oceans 11, 323-350] one-dimensional quasi-geostrophic model was applied to the interpolated mean BC-IWBC jet. The results indicated that the BC system is indeed baroclinically unstable and that the wavelengths depicted in the thermal front analysis are associated with the most unstable waves produced by the model. Growth rates were about 0.06 (0.05) days(-1) for the 266-km (338-km) wave. Moreover, phase speeds for these waves were low compared to the surface BC velocity and may account for remarks in the literature about growing standing or stationary meanders off southeast Brazil. The theoretical vertical structure modes associated with these waves resembled very closely to the one obtained for the current-meter mooring EOF analysis. We interpret this agreement as a confirmation that baroclinic instability is an important mechanism in meander growth in the BC system. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temporally-growing frontal meandering and occasional eddy-shedding is observed in the Brazil Current (BC) as it flows adjacent to the Brazilian Coast. No study of the dynamics of this phenomenon has been conducted to date in the region between 22 degrees S and 25 degrees S. Within this latitude range, the flow over the intermediate continental slope is marked by a current inversion at a depth that is associated with the Intermediate Western Boundary Current (IWBC). A time series analysis of 10-current-meter mooring data was used to describe a mean vertical profile for the BC-IWBC jet and a typical meander vertical structure. The latter was obtained by an empirical orthogonal function (EOF) analysis that showed a single mode explaining 82% of the total variance. This mode structure decayed sharply with depth, revealing that the meandering is much more vigorous within the BC domain than it is in the IWBC region. As the spectral analysis of the mode amplitude time series revealed no significant periods, we searched for dominant wavelengths. This search was done via a spatial EOF analysis on 51 thermal front patterns derived from digitized AVHRR images. Four modes were statistically significant at the 95% confidence level. Modes 3 and 4, which together explained 18% of the total variance, are associated with 266 and 338-km vorticity waves, respectively. With this new information derived from the data, the [Johns, W.E., 1988. One-dimensional baroclinically unstable waves on the Gulf Stream potential vorticity gradient near Cape Hatteras. Dyn. Atmos. Oceans 11, 323-350] one-dimensional quasi-geostrophic model was applied to the interpolated mean BC-IWBC jet. The results indicated that the BC system is indeed baroclinically unstable and that the wavelengths depicted in the thermal front analysis are associated with the most unstable waves produced by the model. Growth rates were about 0.06 (0.05) days(-1) for the 266-km (338-km) wave. Moreover, phase speeds for these waves were low compared to the surface BC velocity and may account for remarks in the literature about growing standing or stationary meanders off southeast Brazil. The theoretical vertical structure modes associated with these waves resembled very closely to the one obtained for the current-meter mooring EOF analysis. We interpret this agreement as a confirmation that baroclinic instability is an important mechanism in meander growth in the BC system. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents experimental results for flow boiling heat transfer coefficient and critical heat flux (CHF) in small flattened tubes. The tested flattened tubes have the same equivalent internal diameter of 2.2 mm, but different aspect height/width ratios (H/W) of 1/4, 1/2, 2 and 4. The experimental data were compared against results for circular tubes using R134a and R245fa as working fluids at a nominal saturation temperature of 31 degrees C. For mass velocities higher than 200 kg/m(2)s, the flattened and circular tubes presented similar heat transfer coefficients. Such a behavior is related to the fact that stratification effects are negligible under conditions of higher mass velocities. Heat transfer correlations from the literature, usually developed using only circular-channel experimental data, predicted the flattened tube results for mass velocities higher than 200 kg/m(2)s with mean absolute error lower than 20% using the equivalent diameter to account for the geometry effect. Similarly, the critical heat flux results were found to be independent of the tube aspect ratio when the same equivalent length was kept. Equivalent length is a new parameter which takes into account the channel heat transfer area. The CHF correlations for round tubes predicted the flattened tube data relatively well when using the equivalent diameter and length. Furthermore, a new proposed CHF correlation predicted the present flattened tube data with a mean absolute error of 5%. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stratified oil-water flow pattern is common in the petroleum industry, especially in offshore directional wells and pipelines. Previous studies have shown that the phenomenon of flow pattern transition in stratified flow can be related to the interfacial wave structure (problem of hydrodynamic instability). The study of the wavy stratified flow pattern requires the characterization of the interfacial wave properties, i.e., average shape, celerity and geometric properties (amplitude and wavelength) as a function of holdup, inclination angle and phases' relative velocity. However, the data available in the literature on wavy stratified flow is scanty, especially in inclined pipes and when oil is viscous. This paper presents new geometric and kinematic interfacial wave properties as a function of a proposed two-phase Froude number in the wavy-stratified liquid-liquid flow. The experimental work was conducted in a glass test line of 12 m and 0.026 m id., oil (density and viscosity of 828 kg/m(3) and 0.3 Pa s at 20 degrees C, respectively) and water as the working fluids at several inclinations from horizontal (-20 degrees, -10 degrees, 0 degrees, 10 degrees, 20 degrees). The results suggest a physical relation between wave shape and the hydrodynamic stability of the stratified liquid-liquid flow pattern. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] We analyze the discontinuity preserving problem in TV-L1 optical flow methods. This type of methods typically creates rounded effects at flow boundaries, which usually do not coincide with object contours. A simple strategy to overcome this problem consists in inhibiting the diffusion at high image gradients. In this work, we first introduce a general framework for TV regularizers in optical flow and relate it with some standard approaches. Our survey takes into account several methods that use decreasing functions for mitigating the diffusion at image contours. Consequently, this kind of strategies may produce instabilities in the estimation of the optical flows. Hence, we study the problem of instabilities and show that it actually arises from an ill-posed formulation. From this study, it is possible to come across with different schemes to solve this problem. One of these consists in separating the pure TV process from the mitigating strategy. This has been used in another work and we demonstrate here that it has a good performance. Furthermore, we propose two alternatives to avoid the instability problems: (i) we study a fully automatic approach that solves the problem based on the information of the whole image; (ii) we derive a semi-automatic approach that takes into account the image gradients in a close neighborhood adapting the parameter in each position. In the experimental results, we present a detailed study and comparison between the different alternatives. These methods provide very good results, especially for sequences with a few dominant gradients. Additionally, a surprising effect of these approaches is that they can cope with occlusions. This can be easily achieved by using strong regularizations and high penalizations at image contours.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrothermal fluids are a fundamental resource for understanding and monitoring volcanic and non-volcanic systems. This thesis is focused on the study of hydrothermal system through numerical modeling with the geothermal simulator TOUGH2. Several simulations are presented, and geophysical and geochemical observables, arising from fluids circulation, are analyzed in detail throughout the thesis. In a volcanic setting, fluids feeding fumaroles and hot spring may play a key role in the hazard evaluation. The evolution of the fluids circulation is caused by a strong interaction between magmatic and hydrothermal systems. A simultaneous analysis of different geophysical and geochemical observables is a sound approach for interpreting monitored data and to infer a consistent conceptual model. Analyzed observables are ground displacement, gravity changes, electrical conductivity, amount, composition and temperature of the emitted gases at surface, and extent of degassing area. Results highlight the different temporal response of the considered observables, as well as the different radial pattern of variation. However, magnitude, temporal response and radial pattern of these signals depend not only on the evolution of fluid circulation, but a main role is played by the considered rock properties. Numerical simulations highlight differences that arise from the assumption of different permeabilities, for both homogeneous and heterogeneous systems. Rock properties affect hydrothermal fluid circulation, controlling both the range of variation and the temporal evolution of the observable signals. Low temperature fumaroles and low discharge rate may be affected by atmospheric conditions. Detailed parametric simulations were performed, aimed to understand the effects of system properties, such as permeability and gas reservoir overpressure, on diffuse degassing when air temperature and barometric pressure changes are applied to the ground surface. Hydrothermal circulation, however, is not only a characteristic of volcanic system. Hot fluids may be involved in several mankind problems, such as studies on geothermal engineering, nuclear waste propagation in porous medium, and Geological Carbon Sequestration (GCS). The current concept for large-scale GCS is the direct injection of supercritical carbon dioxide into deep geological formations which typically contain brine. Upward displacement of such brine from deep reservoirs driven by pressure increases resulting from carbon dioxide injection may occur through abandoned wells, permeable faults or permeable channels. Brine intrusion into aquifers may degrade groundwater resources. Numerical results show that pressure rise drives dense water up to the conduits, and does not necessarily result in continuous flow. Rather, overpressure leads to new hydrostatic equilibrium if fluids are initially density stratified. If warm and salty fluid does not cool passing through the conduit, an oscillatory solution is then possible. Parameter studies delineate steady-state (static) and oscillatory solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dissipation of high heat flux from integrated circuit chips and the maintenance of acceptable junction temperatures in high powered electronics require advanced cooling technologies. One such technology is two-phase cooling in microchannels under confined flow boiling conditions. In macroscale flow boiling bubbles will nucleate on the channel walls, grow, and depart from the surface. In microscale flow boiling bubbles can fill the channel diameter before the liquid drag force has a chance to sweep them off the channel wall. As a confined bubble elongates in a microchannel, it traps thin liquid films between the heated wall and the vapor core that are subject to large temperature gradients. The thin films evaporate rapidly, sometimes faster than the incoming mass flux can replenish bulk fluid in the microchannel. When the local vapor pressure spike exceeds the inlet pressure, it forces the upstream interface to travel back into the inlet plenum and create flow boiling instabilities. Flow boiling instabilities reduce the temperature at which critical heat flux occurs and create channel dryout. Dryout causes high surface temperatures that can destroy the electronic circuits that use two-phase micro heat exchangers for cooling. Flow boiling instability is characterized by periodic oscillation of flow regimes which induce oscillations in fluid temperature, wall temperatures, pressure drop, and mass flux. When nanofluids are used in flow boiling, the nanoparticles become deposited on the heated surface and change its thermal conductivity, roughness, capillarity, wettability, and nucleation site density. It also affects heat transfer by changing bubble departure diameter, bubble departure frequency, and the evaporation of the micro and macrolayer beneath the growing bubbles. Flow boiling was investigated in this study using degassed, deionized water, and 0.001 vol% aluminum oxide nanofluids in a single rectangular brass microchannel with a hydraulic diameter of 229 µm for one inlet fluid temperature of 63°C and two constant flow rates of 0.41 ml/min and 0.82 ml/min. The power input was adjusted for two average surface temperatures of 103°C and 119°C at each flow rate. High speed images were taken periodically for water and nanofluid flow boiling after durations of 25, 75, and 125 minutes from the start of flow. The change in regime timing revealed the effect of nanoparticle suspension and deposition on the Onset of Nucelate Boiling (ONB) and the Onset of Bubble Elongation (OBE). Cycle duration and bubble frequencies are reported for different nanofluid flow boiling durations. The addition of nanoparticles was found to stabilize bubble nucleation and growth and limit the recession rate of the upstream and downstream interfaces, mitigating the spreading of dry spots and elongating the thin film regions to increase thin film evaporation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECT: Preliminary experience with the C-Port Flex-A Anastomosis System (Cardica, Inc.) to enable rapid automated anastomosis has been reported in coronary artery bypass surgery. The goal of the current study was to define the feasibility and safety of this method for high-flow extracranial-intracranial (EC-IC) bypass surgery in a clinical series. METHODS: In a prospective study design, patients with symptomatic carotid artery (CA) occlusion were selected for C-Port-assisted high-flow EC-IC bypass surgery if they met the following criteria: 1) transient or moderate permanent symptoms of focal ischemia; 2) CA occlusion; 3) hemodynamic instability; and 4) had provided informed consent. Bypasses were done using a radial artery graft that was proximally anastomosed to the superficial temporal artery trunk, the cervical external, or common CA. All distal cerebral anastomoses were performed on M2 branches using the C-Port Flex-A system. RESULTS: Within 6 months, 10 patients were enrolled in the study. The distal automated anastomosis could be accomplished in all patients; the median temporary occlusion time was 16.6+/-3.4 minutes. Intraoperative digital subtraction angiography (DSA) confirmed good bypass function in 9 patients, and in 1 the anastomosis was classified as fair. There was 1 major perioperative complication that consisted of the creation of a pseudoaneurysm due to a hardware problem. In all but 1 case the bypass was shown to be patent on DSA after 7 days; furthermore, in 1 patient a late occlusion developed due to vasospasm after a sylvian hemorrhage. One-week follow-up DSA revealed transient asymptomatic extracranial spasm of the donor artery and the radial artery graft in 1 case. Two patients developed a limited zone of infarction on CT scanning during the follow-up course. CONCLUSIONS: In patients with symptomatic CA occlusion, C-Port Flex-A-assisted high-flow EC-IC bypass surgery is a technically feasible procedure. The system needs further modification to achieve a faster and safer anastomosis to enable a conclusive comparison with standard and laser-assisted methods for high-flow bypass surgery.

Relevância:

30.00% 30.00%

Publicador: