965 resultados para external cavity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to compare the pH and calcium ion liberation after use of calcium hydroxide pastes with different paste vehicles in human or bovine teeth. Ninety-two single-rooted human and bovine roots were used. The roots were instrumented and an external cavity preparation was performed. The roots were divided in to human and bovine groups. Each group was subdivided into four subgroups (SB) according to the vehicle:SB1, detergent; SB2, saline; SB3, polyethylenoglycol + camphorated paramonochlorophenol (Calen PMCC) and SB4, polyethylenoglycol + furacyn paramonochlorophenol (FPMC). Specimens were immersed into saline solution at 37 degrees C and after 7 and 14 days pH and calcium ion measurements were made. The results were analyzed by ANOVA and Tukey tests (P < 0.05). There was no statistical difference between bovine and human teeth in the pH analysis (P < 0.05), but bovine teeth provided larger calcium ion liberation than human teeth. Calen PMCC was statistically more effective for pH increase and calcium ion liberation in all analyses, followed by FPMC and saline. Detergent showed the lowest pH alterations and calcium ion liberation. The period of 14 days showed more calcium ionic liberation than the 7-day period.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We experimentally investigate high-frequency microwave signal generation using a 1550 nm single-mode VCSEL subject to two-frequency optical injection. We first consider a situation in which the injected signals come from two similar VCSELs. The polarization of the injected light is parallel to that of the injected VCSEL. We obtain that the VCSEL can be locked to one of the injected signals, but the observed microwave signal is originated by beating at the photodetector. In a second situation we consider injected signals that come from two external cavity tunable lasers with a significant increase of the injected power with respect to the VCSEL-by-VCSEL injection case. The polarization of the injected light is orthogonal to that of the free-running slave VCSEL. We show that in this case it is possible to generate a microwave signal inside the VCSEL cavity. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Self-seeded, gain-switched operation of an InGaN multi-quantum-well laser diode has been demonstrated for the first time. An external cavity comprising Littrow geometry was implemented for spectral control of pulsed operation. The feedback was optimized by adjusting the external cavity length and the driving frequency of the laser. The generated pulses had a peak power in excess of 400mW, a pulse duration of 60ps, a spectral linewidth of 0.14nm and maximum side band suppression ratio of 20dB. It was tunable within the range of 3.6nm centered at a wavelength of 403nm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A broadly tunable master-oscillator power-amplifier (MOPA) picosecond optical pulse source is demonstrated, consisting of an external cavity passively mode-locked laser diode with a tapered semiconductor amplifier. By employing chirped quantum-dot structures on both the oscillator's gain chip and amplifier, a wide tunability range between 1187 and 1283 nm is achieved. Under mode-locked operation, the highest output peak power of 4.39 W is achieved from the MOPA, corresponding to a peak power spectral density of 31.4 dBm/nm. © 1989-2012 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate a CW tunable compact all-room-temperature laser system in the visible spectral region from 567.7 nm to 629.1 nm, by frequency doubling in a periodically-poled KTP waveguide crystal using a tunable quantum-dot external-cavity diode laser.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here we present a compact all-room-temperature frequency-doubling scheme generating orange light, using a PPKTP waveguide and a quantum-dot external cavity diode laser (QD-ECDL). The maximum output power for the second harmonic generated light (SHG) was 1.43 mW at 613 nm, achieved for 70 mW of launched pump power at 1226 nm. This represents an important step towards a compact and wall-plug-efficient coherent orange light source, operating at room temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A compact all-room-temperature frequency-doubling scheme generating cw orange light with a periodically poled potassium titanyl phosphate waveguide and a quantum-dot external cavity diode laser is demonstrated. A frequency-doubled power of up to 4.3 mW at the wavelength of 612.9 nm with a conversion efficiency exceeding 10% is reported. Second harmonic wavelength tuning between 612.9 nm and 616.3 nm by changing the temperature of the crystal is also demonstrated. © Springer-Verlag 2010.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A broadly tunable quantum-dot based ultra-short pulse master oscillator power amplifier with different diffraction grating orders as an external-cavity resonance feedback is studied. A broader tuning range, narrower optical spectra as well as higher peak power spectal density (maximun of 1.37 W/nm) from the second-order diffraction beam are achieved compared to those from the first-order diffraction beam in spite of slightly broader pulse duration from the secondorder diffraction. © The Institution of Engineering and Technology 2013.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the current status of our research in mode-locked quantum-dot edge-emitting laser diodes, particularly highlighting the recent progress in spectral and temporal versatility of both monolithic and external-cavity laser configurations. Spectral versatility is demonstrated through broadband tunability and novel mode-locking regimes that involve distinct spectral bands, such as dual-wavelength mode-locking, and robust high-power wavelength bistability. Broad tunability of the pulse repetition rate is also demonstrated for an external-cavity mode-locked quantum-dot laser, revealing a nearly constant pulse peak power at different pulse repetition rates. High-energy and low-noise pulse generations are demonstrated for low-pulse repetition rates. These recent advances confirm the potential of quantum-dot lasers as versatile, compact, and low-cost sources of ultrashort pulses. © 2011 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A compact picosecond all-room-temperature orange-to-red tunable laser source in the spectral region between 600 and 627 nm is demonstrated. The tunable radiation is obtained by second-harmonic generation in a periodically poled potassium titanyl phosphate (PPKTP) multimode waveguide using a tunable quantum-dot external-cavity mode-locked laser. The maximum second-harmonic output peak power of 3.91 mW at 613 nm is achieved for 85.94 mW of launched pump peak power at 1226 nm, resulting in conversion efficiency of 4.55%. © 2013 Optical Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Orange light with maximum conversion efficiency exceeding 10% and CW output power of 12.04 mW, 10.45 mW and 6.24 mW has been generated at 606, 608, and 611 nm, respectively, from a frequency-doubled InAs/GaAs quantum-dot external-cavity diode laser by use of a periodically-poled KTP waveguides with different cross-sectional areas. The wider waveguide with the cross-sectional area of 4×4 μm demonstrated better results in comparison with the narrower waveguides (3×5 μm and 2×6 μm) which corresponded to lower coupling efficiency. Additional tuning of second harmonic light (between 606 and 614 nm) with similar conversion efficiency was possible by changing the crystal temperature. © 2014 Copyright SPIE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate a compact all-room-temperature picosecond laser source broadly tunable in the visible spectral region between 600 nm and 627 nm. The tunable radiation is obtained by frequency-doubling of a tunable quantum-dot external-cavity mode-locked laser in a periodically-poled KTP multimode waveguide. In this case, utilization of a significant difference in the effective refractive indices of the high- and low-order modes enables to match the period of poling in a very broad wavelength range. The maximum achieved second harmonic output peak power is 3.25 mW at 613 nm for 71.43 mW of launched pump peak power at 1226 nm, resulting in conversion efficiency of 4.55%. © 2013 Copyright SPIE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Generation of stable dual and/or multiple longitudinal modes emitted from a single quantum dot (QD) laser diode (LD) over a broad wavelength range by using volume Bragg gratings (VBG's) in an external cavity setup is reported. The LD operates in both the ground and excited states and the gratings give a dual-mode separation around each emission peak of 5 nm, which is suitable as a continuous wave (CW) optical pump signal for a terahertz (THz) photomixer device. The setup also generates dual modes around both 1180m and 1260 nm simultaneously, giving four simultaneous narrow linewidth modes comprising two simultaneous difference frequency pump signals. (C) 2011 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A compact all-room-temperature CW 73-nm tunable laser source in the visible spectral region (574nm-647nm) has been demonstrated by frequency-doubling of a broadly-tunable InAs/GaAs quantum dot external-cavity diode laser in periodically-poled potassium titanyl phosphate waveguides with a maximum output power in excess of 12mW and a maximum conversion efficiency exceeding 10%. Three waveguides with different cross-sectional areas (4×4μm2, 3×5μm2 and 2x6μm2) were investigated. Introduction - Development of compact broadly tunable laser sources in the visible spectral region is currently very attractive area of research with applications ranging from photomedicine and biophotonics to confocal fluorescence microscopy and laser projection displays. In this respect, semiconductor lasers with their small size, high efficiency, reliability and low cost are very promising for realization of such sources by frequency­doubling of the infrared light in nonlinear crystal waveguides. Furthermore, the wide tunability offered by quantum-dot (QD) external-cavity diode lasers (ECDL), due to the temperature insensibility and broad gain bandwidth [1,2], is very promising for the development of tunable visible laser sources [3,4]. In this work we show a compact green-to-red tunable all­room-temperature CW laser source using a frequency-doubled InAs/GaAs QD-ECDL in periodically-poled potassium titanyl phosphate (PPKTP) crystal waveguides. This laser source generates frequency-doubled light over the 574nm-647nm wavelength range utilizing the significant difference in the effective refractive indices of high-order and low-order modes in multimode waveguides [3]. Experimental results - Experimental setup used in this work was similar to that described in [3] and consisted of a QD gain chip in the quasi­Littrow configuration and a PPKTP waveguide. Coarse wavelength tuning of the QD-ECDL between 1140 nm and 1300 nm at 20°C was possible for pump current of 1.5 A. The laser output was coupled into the PPKTP waveguide using an AR-coated 40x aspheric lens (NA ~ 0.55). The PPKTP frequency-doubling crystal (not AR coated) used in our work was 18 mm in length and was periodically poled for SHG (with the poling period of ~ 11.574 11m). The crystal contained 3 different waveguides with cross-sectional areas of ~ 4x4 11m2, 3x5 11m2 and 2x6 11m2. Both the pump laser and the PPKTP crystal were operating at room temperature. The waveguides with cross-sectional areas of 4x411m2, 3x511m2 and 2x611m2 demonstrated the tunability in the wavelength ranges of 577nm - 647nm, 576nm -643nm and 574nm - 641nm, respectively, with a maximum output power of 12.04mW at 606 nm Conclusion - We demonstrated a compact all-room-temperature broadly­tunable laser source operating in the visible spectral region between 574nm and 647nm. This laser source is based on second harmonic generation in PPKTP waveguides with different cross-sectional areas using an InAs/GaAs QD-ECDL References [I] E.U. Rafailov, M.A. Cataluna, and W. Sibbett, Nat. Phot. 1,395 (2007). [2] K.A. Fedorova, M.A. Cataluna, I. Krestnikov, D. Livshits, and E.U. Rafailov, Opt. Express 18(18), 19438-19443 (2010). [3] K.A. Fedorova, G.S. Sokolovskii, P.R. Battle, D.A. Livshits, and E.U. Rafailov, Laser Phys. Lett. 9, 790-795 (2012). [4] K.A. Fedorova,G.S. Sokolovskii, D.T. Nikitichev, P.R. Battle, I.L. Krestnikov, D.A. Livshits, and E.U. Rafailov, Opt. Lett. 38(15), 2835-2837 (2013) © 2014 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Self-seeded, gain-switched operation of an InGaN multi-quantum-well diode laser is reported for the first time. Narrow-line, wavelength-tunable, picosecond pulses have been generated from a standard, uncoated diode laser in an external cavity.