901 resultados para event-related potential (ERP)
Resumo:
Preattentive perception of occasional deviating stimuli in the stream of standard stimuli can be recorded with cognitive event-related potential (ERP) mismatch negativity (MMN). The earlier detection of stimuli at the auditory cortex can be examined with N1 and P2 ERPs. The MMN recording does not require co-operation, it correlates with perceptual threshold, and even complex sounds can be used as stimuli. The aim of this study was to examine different aspects that should be considered when measuring discrimination of hearing with ERPs. The MMN was found to be stimulusintensity- dependent. As the intensity of sine wave stimuli was increased from 40 to 80 dB HL, MMN mean amplitudes increased. The effect of stimulus frequency on the MMN was studied so that the pitch difference would be equal in each stimulus block according to the psychophysiological mel scale or the difference limen of frequency (DLF). However, the blocks differed from each other. The contralateral white noise masking (50 dB EML) was found to attenuate the MMN amplitude when the right ear was stimulated. The N1 amplitude was attenuated and, in contrast, P2 amplitude was not affected by contralateral white noise masking. The perception and production of vowels by four postlingually deafened patients with a cochlear implant were studied. The MMN response could be elicited in the patient with the best vowel perception abilities. The results of the studies show that concerning the MMN recordings, the stimulus parameters and recording procedure design have a great influence on the results.
Resumo:
Middle ear infections (acute otitis media, AOM) are among the most common infectious diseases in childhood, their incidence being greatest at the age of 6–12 months. Approximately 10–30% of children undergo repetitive periods of AOM, referred to as recurrent acute otitis media (RAOM). Middle ear fluid during an AOM episode causes, on average, 20–30 dB of hearing loss lasting from a few days to as much as a couple of months. It is well known that even a mild permanent hearing loss has an effect on language development but so far there is no consensus regarding the consequences of RAOM on childhood language acquisition. The results of studies on middle ear infections and language development have been partly discrepant and the exact effects of RAOM on the developing central auditory nervous system are as yet unknown. This thesis aims to examine central auditory processing and speech production among 2-year-old children with RAOM. Event-related potentials (ERPs) extracted from electroencephalography can be used to objectively investigate the functioning of the central auditory nervous system. For the first time this thesis has utilized auditory ERPs to study sound encoding and preattentive auditory discrimination of speech stimuli, and neural mechanisms of involuntary auditory attention in children with RAOM. Furthermore, the level of phonological development was studied by investigating the number and the quality of consonants produced by these children. Acquisition of consonant phonemes, which are harder to hear than vowels, is a good indicator of the ability to form accurate memory representations of ambient language and has not been studied previously in Finnish-speaking children with RAOM. The results showed that the cortical sound encoding was intact but the preattentive auditory discrimination of multiple speech sound features was atypical in those children with RAOM. Furthermore, their neural mechanisms of auditory attention differed from those of their peers, thus indicating that children with RAOM are atypically sensitive to novel but meaningless sounds. The children with RAOM also produced fewer consonants than their controls. Noticeably, they had a delay in the acquisition of word-medial consonants and the Finnish phoneme /s/, which is acoustically challenging to perceive compared to the other Finnish phonemes. The findings indicate the immaturity of central auditory processing in the children with RAOM, and this might also emerge in speech production. This thesis also showed that the effects of RAOM on central auditory processing are long-lasting because the children had healthy ears at the time of the study. An effective neural network for speech sound processing is a basic requisite of language acquisition, and RAOM in early childhood should be considered as a risk factor for language development.
Resumo:
The ability to monitor and evaluate the consequences of ongoing behaviors and coordinate behavioral adjustments seems to rely on networks including the anterior cingulate cortex (ACC) and phasic changes in dopamine activity. Activity (and presumably functional maturation) of the ACC may be indirectly measured using the error-related negativity (ERN), an event-related potential (ERP) component that is hypothesized to reflect activity of the automatic response monitoring system. To date, no studies have examined the measurement reliability of the ERN as a trait-like measure of response monitoring, its development in mid- and late- adolescence as well as its relation to risk-taking and empathic ability, two traits linked to dopaminergic and ACC activity. Utilizing a large sample of 15- and 18-year-old males, the present study examined the test-retest reliability of the ERN, age-related changes in the ERN and other components of the ERP associated with error monitoring (the Pe and CRN), and the relations of the error-related ERP components to personality traits of risk propensity and empathy. Results indicated good test-retest reliability of the ERN providing important validation of the ERN as a stable and possibly trait-like electrophysiological correlate of performance monitoring. Ofthe three components, only the ERN was of greater amplitude for the older adolescents suggesting that its ACC network is functionally late to mature, due to either structural or neurochemical changes with age. Finally, the ERN was smaller for those with high risk propensity and low empathy, while other components associated with error monitoring were not, which suggests that poor ACe function may be associated with the desire to engage in risky behaviors and the ERN may be influenced by the extent of individuals' concern with the outcome of events.
Resumo:
The medial prefrontal cortex (mPFC) is involved in performance-monitoring and has been implicated in the generation of several electrocortical responses associated with self-regulation. The error-related negativity (ERN), the inhibitory Nogo N2 (N2), and the feedback-related negativity (FRN) are event-related potential (ERP) components which reflect mPFC activity associated with feedback to behavioural (ERN, N2) and environmental (FRN) consequences. Our main goal was to determine whether or not rnPFC activation varies as a function of motivational context (e.g., those involving performance-related incentives) or the use of internally versus externally generated feedback signals (i.e., errors). Additionally, we assessed medial prefrontal activity in relation to individual differences in personality and temperament. Participants completed a combination of tasks in which performance-related incentives were associated with task performance and feedback generated from internal versus external responses. MPFC activity was indexed using both ERP scalp voltage peaks and intracerebral current source density (CSD) of dorsal and ventral regions. Additionally, participants completed several questionnaires assessing personality and temperament styles. Given previous studies have shown that enhanced mPFC activity to loss (or negative) feedback, we expected that activity in the mPFC would generally be greater during the Loss condition relative to the Win condition for both the ERN and N2. Also, due to the evidence that the (vmPFC) is engaged in arousing contexts, we hypothesized that activity in the ventromedial prefrontal cortex (vmPFC) would be greater than activity in the dorsomedial prefrontal cortex (dmPFC), especially in the Loss condition of the GoNogo task (ERN). Similarly, loss feedback in the BART (FRN) was expected to engage the vmPFC more than the dmPFC. Finally, we predicted that persons rating themselves as more willing to engage in approach-related behaviours or to exhibit rigid cognitive styles would show reduced activity of the mPFC. Overall, our results emphasize the role of affective evaluations of behavioural and environmental consequences when self-regulating. Although there were no effects of context on brain activity, our data indicate that, during the time of the ERN and N2 on the MW Go-Nogo task and the FRN on the BART, the vrnPFC was more active compared to the dmPFC. Moreover, regional recruitment in the mPFC was similar across internally (ERN) and externally (FRN) generated errors signals associated with loss feedback, as reflected by relatively greater activity in the vmPFC than the dmPFC. Our data also suggest that greater activity in the mPFC is associated with better inhibitory control, as reflected by both scalp and CSD measures. Additionally, deactivation of the subgenual anterior cingulate cortex (sgACC) and lower levels of self-reported positive affect were both related to increased voluntary risk-taking on the BART. Finally, persons reporting higher levels of approach-related behaviour or cognitive rigidity showed reduced activity of the mPFC. These results are in line with previous research emphasizing that affect/motivation is central to the processes reflected by mediofrontal negativities (MFNs), that the vmPFC is involved in regulating demands on motivational/affective systems, and that the underlying mechanisms driving these functions vary across both individuals and contexts.
Resumo:
Le traitement visuel répété d’un visage inconnu entraîne une suppression de l’activité neuronale dans les régions préférentielles aux visages du cortex occipito-temporal. Cette «suppression neuronale» (SN) est un mécanisme primitif hautement impliqué dans l’apprentissage de visages, pouvant être détecté par une réduction de l’amplitude de la composante N170, un potentiel relié à l’événement (PRE), au-dessus du cortex occipito-temporal. Le cortex préfrontal dorsolatéral (CPDL) influence le traitement et l’encodage visuel, mais sa contribution à la SN de la N170 demeure inconnue. Nous avons utilisé la stimulation électrique transcrânienne à courant direct (SETCD) pour moduler l’excitabilité corticale du CPDL de 14 adultes sains lors de l’apprentissage de visages inconnus. Trois conditions de stimulation étaient utilisées: inhibition à droite, excitation à droite et placebo. Pendant l’apprentissage, l’EEG était enregistré afin d’évaluer la SN de la P100, la N170 et la P300. Trois jours suivant l’apprentissage, une tâche de reconnaissance était administrée où les performances en pourcentage de bonnes réponses et temps de réaction (TR) étaient enregistrées. Les résultats indiquent que la condition d’excitation à droite a facilité la SN de la N170 et a augmentée l’amplitude de la P300, entraînant une reconnaissance des visages plus rapide à long-terme. À l’inverse, la condition d’inhibition à droite a causé une augmentation de l’amplitude de la N170 et des TR plus lents, sans affecter la P300. Ces résultats sont les premiers à démontrer que la modulation d’excitabilité du CPDL puisse influencer l’encodage visuel de visages inconnus, soulignant l’importance du CPDL dans les mécanismes d’apprentissage de base.
Resumo:
Une composante PRE (potentiel relié aux événements) nommée la N2pc est associée au déploiement de l’attention visuo-spatiale. Nous avons examiné la modulation de la N2pc en fonction de la présence ou l’absence d’une cible, la séparation physique de deux items saillants ainsi que leur similarité. Les stimuli présentés étaient des lignes variant selon leur orientation et leur couleur, les items saillants étant bleus et les items non saillants, gris. Les résultats démontrent une augmentation de l’amplitude de la N2pc en lien avec la distance séparant deux items saillants ainsi qu’une augmentation de l’amplitude de la N2pc lorsque les items saillants avaient des orientations plus similaires. Aucune interaction entre ces deux facteurs n’a été observée. Une interaction significative a par contre été observée entre la présence/absence d’une cible et la similarité du distracteur avec la cible recherchée. Ces résultats montrent une dissociation entre l’activité reliée à la distance entre les items saillants et celle qui est reliée à la similarité distracteur-cible, car ils ne peuvent pas être expliqués par un seul mécanisme. Donc, les résultats suggèrent qu’une combinaison de traitement ascendant et de traitement descendant module la composante N2pc.
Resumo:
A new control paradigm for Brain Computer Interfaces (BCIs) is proposed. BCIs provide a means of communication direct from the brain to a computer that allows individuals with motor disabilities an additional channel of communication and control of their external environment. Traditional BCI control paradigms use motor imagery, frequency rhythm modification or the Event Related Potential (ERP) as a means of extracting a control signal. A new control paradigm for BCIs based on speech imagery is initially proposed. Further to this a unique system for identifying correlations between components of the EEG and target events is proposed and introduced.
Resumo:
The present chapter gives a comprehensive introduction into the display and quantitative characterization of scalp field data. After introducing the construction of scalp field maps, different interpolation methods, the effect of the recording reference and the computation of spatial derivatives are discussed. The arguments raised in this first part have important implications for resolving a potential ambiguity in the interpretation of differences of scalp field data. In the second part of the chapter different approaches for comparing scalp field data are described. All of these comparisons can be interpreted in terms of differences of intracerebral sources either in strength, or in location and orientation in a nonambiguous way. In the present chapter we only refer to scalp field potentials, but mapping also can be used to display other features, such as power or statistical values. However, the rules for comparing and interpreting scalp field potentials might not apply to such data. Generic form of scalp field data Electroencephalogram (EEG) and event-related potential (ERP) recordings consist of one value for each sample in time and for each electrode. The recorded EEG and ERP data thus represent a two-dimensional array, with one dimension corresponding to the variable “time” and the other dimension corresponding to the variable “space” or electrode. Table 2.1 shows ERP measurements over a brief time period. The ERP data (averaged over a group of healthy subjects) were recorded with 19 electrodes during a visual paradigm. The parietal midline Pz electrode has been used as the reference electrode.
Resumo:
Brain electrical microstates represent spatial configurations of scalp recorded brain electrical activity and are considered to be the basic elements of stepwise processing of information in the brain. In the present study, the hypothesis of a temporo-limbic dysfunction in panic disorder (PD) was tested by investigating the topographic descriptors of brain microstates, in particular the one corresponding to the Late Positive Complex (LPC), an event-related potential (ERP) component with generators in these regions. ERPs were recorded in PD patients and matched healthy subjects during a target detection task, in a central (CC) and a lateral condition (LC). In the CC, a leftward shift of the LPC microstate positive centroid was observed in the patients with PD versus the healthy control subjects. In the LC, the topographic descriptor of the first microstate showed a rightward shift, while those of both the second and the fourth microstate, corresponding to the LPC, revealed a leftward shift in the PD patients versus the healthy control subjects. These findings indicate an overactivation of the right hemisphere networks involved in early visual processing and a hypoactivation of the right hemisphere circuits involved in LPC generators in PD. In line with this interpretation, the abnormal topography of the LPC microstate, observed in the CC, was associated with a worse performance on a test exploring right temporo-hippocampal functioning. Topographical abnormalities found for the LPC microstate in the LC were associated with a higher number of panic attacks, suggesting a pathogenetic role of the right temporo-hippocampal dysfunction in PD.
Resumo:
Covert brain activity related to task-free, spontaneous (i.e. unrequested), emotional evaluation of human face images was analysed in 27-channel averaged event-related potential (ERP) map series recorded from 18 healthy subjects while observing random sequences of face images without further instructions. After recording, subjects self-rated each face image on a scale from “liked” to “disliked”. These ratings were used to dichotomize the face images into the affective evaluation categories of “liked” and “disliked” for each subject and the subjects into the affective attitudes of “philanthropists” and “misanthropists” (depending on their mean rating across images). Event-related map series were averaged for “liked” and “disliked” face images and for “philanthropists” and “misanthropists”. The spatial configuration (landscape) of the electric field maps was assessed numerically by the electric gravity center, a conservative estimate of the mean location of all intracerebral, active, electric sources. Differences in electric gravity center location indicate activity of different neuronal populations. The electric gravity center locations of all event-related maps were averaged over the entire stimulus-on time (450 ms). The mean electric gravity center for disliked faces was located (significant across subjects) more to the right and somewhat more posterior than for liked faces. Similar differences were found between the mean electric gravity centers of misanthropists (more right and posterior) and philanthropists. Our neurophysiological findings are in line with neuropsychological findings, revealing visual emotional processing to depend on affective evaluation category and affective attitude, and extending the conclusions to a paradigm without directed task.
Resumo:
Objectives: Although behavioral studies have demonstrated that normative affective traits modulate the processing of facial and emotionally charged stimuli, direct electrophysiological evidence for this modulation is still lacking. Methods: Event-related potential (ERP) data associated with personal, traitlike approach- or withdrawal-related attitude (assessed post-recording and 14 months later) were investigated in 18 subjects during task-free (i.e. unrequested, spontaneous) emotional evaluation of faces. Temporal and spatial aspects of 27 channel ERP were analyzed with microstate analysis and low resolution electromagnetic tomography (LORETA), a new method to compute 3 dimensional cortical current density implemented in the Talairach brain atlas. Results: Microstate analysis showed group differences 132-196 and 196-272 ms poststimulus, with right-shifted electric gravity centers for subjects with negative affective attitude. During these (over subjects reliably identifiable) personality-modulated, face-elicited microstates, LORETA revealed activation of bilateral occipito-temporal regions, reportedly associated with facial configuration extraction processes. Negative compared to positive affective attitude showed higher activity right temporal; positive compared to negative attitude showed higher activity left temporo-parieto-occipital. Conclusions: These temporal and spatial aspects suggest that the subject groups differed in brain activity at early, automatic, stimulus-related face processing steps when structural face encoding (configuration extraction) occurs. In sum, the brain functional microstates associated with affect-related personality features modulate brain mechanisms during face processing already at early information processing stages.
Resumo:
Patients with amnestic mild cognitive impairment are at high risk for developing Alzheimer's disease. Besides episodic memory dysfunction they show deficits in accessing contextual knowledge that further specifies a general spatial navigation task or an executive function (EF) virtual action planning. There has been only one previous work with virtual reality and the use of a virtual action planning supermarket for the diagnosis of mild cognitive impairment. The authors of that study examined the feasibility and the validity of the virtual action planning supermarket (VAP-S) for the diagnosis of patients with mild cognitive impairment (MCI) and found that the VAP-S is a viable tool to assess EF deficits. In our study we employed the in-house platform of virtual action planning museum (VAP-M) and a sample of 25 MCI and 25 controls, in order to investigate deficits in spatial navigation, prospective memory and executive function. In addition, we used the morphology of late components in event-related potential (ERP) responses, as a marker for cognitive dysfunction. The related measurements were fed to a common classification scheme facilitating the direct comparison of both approaches. Our results indicate that both the VAP-M and ERP averages were able to differentiate between healthy elders and patients with amnestic mild cognitive impairment and agree with the findings of the virtual action planning supermarket (VAP-S). The sensitivity (specificity) was 100% (98%) for the VAP-M data and 87%(90%) for the ERP responses. Considering that ERPs have proven to advance the early detection and diagnosis of "presymptomatic AD", the suggested VAP-M platform appears as an appealing alternative.
Resumo:
Patients with amnestic mild cognitive impairment are at high risk for developing Alzheimer's disease. Besides episodic memory dysfunction they show deficits in accessing contextual knowledge that further specifies a general spatial navigation task or an executive function (EF) virtual action planning. Virtual reality (VR) environments have already been successfully used in cognitive rehabilitation and show increased potential for use in neuropsychological evaluation allowing for greater ecological validity while being more engaging and user friendly. In our study we employed the in-house platform of virtual action planning museum (VAP-M) and a sample of 25 MCI and 25 controls, in order to investigate deficits in spatial navigation, prospective memory, and executive function. In addition, we used the morphology of late components in event-related potential (ERP) responses, as a marker for cognitive dysfunction. The related measurements were fed to a common classification scheme facilitating the direct comparison of both approaches. Our results indicate that both the VAP-M and ERP averages were able to differentiate between healthy elders and patients with amnestic mild cognitive impairment and agree with the findings of the virtual action planning supermarket (VAP-S). The sensitivity (specificity) was 100% (98%) for the VAP-M data and 87% (90%) for the ERP responses. Considering that ERPs have proven to advance the early detection and diagnosis of "presymptomatic AD," the suggested VAP-M platform appears as an appealing alternative.
Resumo:
Amnesic patients with early and seemingly isolated hippocampal injury show relatively normal recognition memory scores. The cognitive profile of these patients raises the possibility that this recognition performance is maintained mainly by stimulus familiarity in the absence of recollection of contextual information. Here we report electrophysiological data on the status of recognition memory in one of the patients, Jon. Jon's recognition of studied words lacks the event-related potential (ERP) index of recollection, viz., an increase in the late positive component (500–700 ms), under conditions that elicit it reliably in normal subjects. On the other hand, a decrease of the ERP amplitude between 300 and 500 ms, also reliably found in normal subjects, is well preserved. This so-called N400 effect has been linked to stimulus familiarity in previous ERP studies of recognition memory. In Jon, this link is supported by the finding that his recognized and unrecognized studied words evoked topographically distinct ERP effects in the N400 time window. These data suggest that recollection is more dependent on the hippocampal formation than is familiarity, consistent with the view that the hippocampal formation plays a special role in episodic memory, for which recollection is so critical.
Resumo:
Drawing inferences from past experiences enables adaptive behavior in future situations. Inference has been shown to depend on hippocampal processes. Usually, inference is considered a deliberate and effortful mental act which happens during retrieval, and requires the focus of our awareness. Recent fMRI studies hint at the possibility that some forms of hippocampus-dependent inference can also occur during encoding and possibly also outside of awareness. Here, we sought to further explore the feasibility of hippocampal implicit inference, and specifically address the temporal evolution of implicit inference using intracranial EEG. Presurgical epilepsy patients with hippocampal depth electrodes viewed a sequence of word pairs, and judged the semantic fit between two words in each pair. Some of the word pairs entailed a common word (e.g.,‘winter - red’, ‘red - cat’) such that an indirect relation was established in following word pairs (e.g, ‘winter - cat’). The behavioral results suggested that drawing inference implicitly from past experience is feasible because indirect relations seemed to foster ‘fit’ judgments while the absence of indirect relations fostered 'do not fit' judgments, even though the participants were unaware of the indirect relations. A event-related potential (ERP) difference emerging 400 ms post-stimulus was evident in the hippocampus during encoding, suggesting that indirect relations were already established automatically during encoding of the overlapping word pairs. Further ERP differences emerged later post-stimulus (1500 ms), were modulated by the participants' responses and were evident during encoding and test. Furthermore, response-locked ERP effects were evident at test. These ERP effects could hence be a correlate of the interaction of implicit memory with decision-making. Together, the data map out a time-course in which the hippocampus automatically integrates memories from discrete but related episodes to implicitly influence future decision making.