1000 resultados para environmental fee
Resumo:
Background: The seasonality of suicide has long been recognised. However, little is known about the relative importance of socio-environmental factors in the occurrence of suicide in different geographical areas. This study examined the association of climate, socioeconomic and demographic factors with suicide in Queensland, Australia, using a spatiotemporal approach. Methods: Seasonal data on suicide, demographic variables and socioeconomic indexes for areas in each Local Government Area (LGA) between 1999 and 2003 were acquired from the Australian Bureau of Statistics. Climate data were supplied by the Australian Bureau of Meteorology. A multivariable generalized estimating equation model was used to examine the impact of socio-environmental factors on suicide. Results: The preliminary data analyses show that far north Queensland had the highest suicide incidence (e.g., Cook and Mornington Shires), while the south-western areas had the lowest incidence (e.g., Barcoo and Bauhinia Shires) in all the seasons. Maximum temperature, unemployment rate, the proportion of Indigenous population and the proportion of population with low individual income were statistically significantly and positively associated with suicide. There were weaker but not significant associations for other variables. Conclusions: Maximum temperature, the proportion of Indigenous population and unemployment rate appeared to be major determinants of suicide at a LGA level in Queensland.
Resumo:
Crucial to enhancing the status and quality of games teaching in schools is a developed understanding of the teaching strategies adopted by practitioners. In this paper, we will demonstrate that contemporary games‟ teaching is a product of individual, task and environmental constraints (Newell, 1986). More specifically, we will show that current pedagogy in the U.K., Australia and the United States is strongly influenced by historical, socio-cultural environmental and political constraints. In summary, we will aim to answer the question „why do teachers teach games the way they do.‟ In answering this question, we conclude that teacher educators, who are trying to influence pedagogical practice, must understand these potential constraints and provide appropriate pre-service experiences to give future physical education teachers the knowledge, confidence and ability to adopt a range of teaching styles when they become fully fledged teachers. Essential to this process is the need to enable future practitioners to base their pedagogical practice on a sound understanding of contemporary learning theories of skill acquisition.
Resumo:
Suicide has drawn much attention from both the scientific community and the public. Examining the impact of socio-environmental factors on suicide is essential in developing suicide prevention strategies and interventions, because it will provide health authorities with important information for their decision-making. However, previous studies did not examine the impact of socio-environmental factors on suicide using a spatial analysis approach. The purpose of this study was to identify the patterns of suicide and to examine how socio-environmental factors impact on suicide over time and space at the Local Governmental Area (LGA) level in Queensland. The suicide data between 1999 and 2003 were collected from the Australian Bureau of Statistics (ABS). Socio-environmental variables at the LGA level included climate (rainfall, maximum and minimum temperature), Socioeconomic Indexes for Areas (SEIFA) and demographic variables (proportion of Indigenous population, unemployment rate, proportion of population with low income and low education level). Climate data were obtained from Australian Bureau of Meteorology. SEIFA and demographic variables were acquired from ABS. A series of statistical and geographical information system (GIS) approaches were applied in the analysis. This study included two stages. The first stage used average annual data to view the spatial pattern of suicide and to examine the association between socio-environmental factors and suicide over space. The second stage examined the spatiotemporal pattern of suicide and assessed the socio-environmental determinants of suicide, using more detailed seasonal data. In this research, 2,445 suicide cases were included, with 1,957 males (80.0%) and 488 females (20.0%). In the first stage, we examined the spatial pattern and the determinants of suicide using 5-year aggregated data. Spearman correlations were used to assess associations between variables. Then a Poisson regression model was applied in the multivariable analysis, as the occurrence of suicide is a small probability event and this model fitted the data quite well. Suicide mortality varied across LGAs and was associated with a range of socio-environmental factors. The multivariable analysis showed that maximum temperature was significantly and positively associated with male suicide (relative risk [RR] = 1.03, 95% CI: 1.00 to 1.07). Higher proportion of Indigenous population was accompanied with more suicide in male population (male: RR = 1.02, 95% CI: 1.01 to 1.03). There was a positive association between unemployment rate and suicide in both genders (male: RR = 1.04, 95% CI: 1.02 to 1.06; female: RR = 1.07, 95% CI: 1.00 to 1.16). No significant association was observed for rainfall, minimum temperature, SEIFA, proportion of population with low individual income and low educational attainment. In the second stage of this study, we undertook a preliminary spatiotemporal analysis of suicide using seasonal data. Firstly, we assessed the interrelations between variables. Secondly, a generalised estimating equations (GEE) model was used to examine the socio-environmental impact on suicide over time and space, as this model is well suited to analyze repeated longitudinal data (e.g., seasonal suicide mortality in a certain LGA) and it fitted the data better than other models (e.g., Poisson model). The suicide pattern varied with season and LGA. The north of Queensland had the highest suicide mortality rate in all the seasons, while there was no suicide case occurred in the southwest. Northwest had consistently higher suicide mortality in spring, autumn and winter. In other areas, suicide mortality varied between seasons. This analysis showed that maximum temperature was positively associated with suicide among male population (RR = 1.24, 95% CI: 1.04 to 1.47) and total population (RR = 1.15, 95% CI: 1.00 to 1.32). Higher proportion of Indigenous population was accompanied with more suicide among total population (RR = 1.16, 95% CI: 1.13 to 1.19) and by gender (male: RR = 1.07, 95% CI: 1.01 to 1.13; female: RR = 1.23, 95% CI: 1.03 to 1.48). Unemployment rate was positively associated with total (RR = 1.40, 95% CI: 1.24 to 1.59) and female (RR=1.09, 95% CI: 1.01 to 1.18) suicide. There was also a positive association between proportion of population with low individual income and suicide in total (RR = 1.28, 95% CI: 1.10 to 1.48) and male (RR = 1.45, 95% CI: 1.23 to 1.72) population. Rainfall was only positively associated with suicide in total population (RR = 1.11, 95% CI: 1.04 to 1.19). There was no significant association for rainfall, minimum temperature, SEIFA, proportion of population with low educational attainment. The second stage is the extension of the first stage. Different spatial scales of dataset were used between the two stages (i.e., mean yearly data in the first stage, and seasonal data in the second stage), but the results are generally consistent with each other. Compared with other studies, this research explored the variety of the impact of a wide range of socio-environmental factors on suicide in different geographical units. Maximum temperature, proportion of Indigenous population, unemployment rate and proportion of population with low individual income were among the major determinants of suicide in Queensland. However, the influence from other factors (e.g. socio-culture background, alcohol and drug use) influencing suicide cannot be ignored. An in-depth understanding of these factors is vital in planning and implementing suicide prevention strategies. Five recommendations for future research are derived from this study: (1) It is vital to acquire detailed personal information on each suicide case and relevant information among the population in assessing the key socio-environmental determinants of suicide; (2) Bayesian model could be applied to compare mortality rates and their socio-environmental determinants across LGAs in future research; (3) In the LGAs with warm weather, high proportion of Indigenous population and/or unemployment rate, concerted efforts need to be made to control and prevent suicide and other mental health problems; (4) The current surveillance, forecasting and early warning system needs to be strengthened, to trace the climate and socioeconomic change over time and space and its impact on population health; (5) It is necessary to evaluate and improve the facilities of mental health care, psychological consultation, suicide prevention and control programs; especially in the areas with low socio-economic status, high unemployment rate, extreme weather events and natural disasters.
Resumo:
User-Based intelligent systems are already commonplace in a student’s online digital life. Each time they browse, search, buy, join, comment, play, travel, upload, download, a system collects, analyses and processes data in an effort to customise content and further improve services. This panel session will explore how intelligent systems, particularly those that gather data from mobile devices, can offer new possibilities to assist in the delivery of customised, personal and engaging learning experiences. The value of intelligent systems for education lies in their ability to formulate authentic and complex learner profiles that bring together and systematically integrate a student’s personal world with a formal curriculum framework. As we well know, a mobile device can collect data relating to a student’s interests (gathered from search history, applications and communications), location, surroundings and proximity to others (GPS, Bluetooth). However, what has been less explored is the opportunity for a mobile device to map the movements and activities of a student from moment to moment and over time. This longitudinal data provides a holistic profile of a student, their state and surroundings. Analysing this data may allow us to identify patterns that reveal a student’s learning processes; when and where they work best and for how long. Through revealing a student’s state and surroundings outside of schools hour, this longitudinal data may also highlight opportunities to transform a student’s everyday world into an inventory for learning, punctuating their surroundings with learning recommendations. This would in turn lead to new ways to acknowledge and validate and foster informal learning, making it legitimate within a formal curriculum.
Resumo:
Principal Topic: Project structures are often created by entrepreneurs and large corporate organizations to develop new products. Since new product development projects (NPDP) are more often situated within a larger organization, intrapreneurship or corporate entrepreneurship plays an important role in bringing these projects to fruition. Since NPDP often involves the development of a new product using immature technology, we describe development of an immature technology. The Joint Strike Fighter (JSF) F-35 aircraft is being developed by the U.S. Department of Defense and eight allied nations. In 2001 Lockheed Martin won a $19 billion contract to develop an affordable, stealthy and supersonic all-weather strike fighter designed to replace a wide range of aging fighter aircraft. In this research we define a complex project as one that demonstrates a number of sources of uncertainty to a degree, or level of severity, that makes it extremely difficult to predict project outcomes, to control or manage project (Remington & Zolin, Forthcoming). Project complexity has been conceptualized by Remington and Pollock (2007) in terms of four major sources of complexity; temporal, directional, structural and technological complexity (See Figure 1). Temporal complexity exists when projects experience significant environmental change outside the direct influence or control of the project. The Global Economic Crisis of 2008 - 2009 is a good example of the type of environmental change that can make a project complex as, for example in the JSF project, where project managers attempt to respond to changes in interest rates, international currency exchange rates and commodity prices etc. Directional complexity exists in a project where stakeholders' goals are unclear or undefined, where progress is hindered by unknown political agendas, or where stakeholders disagree or misunderstand project goals. In the JSF project all the services and all non countries have to agree to the specifications of the three variants of the aircraft; Conventional Take Off and Landing (CTOL), Short Take Off/Vertical Landing (STOVL) and the Carrier Variant (CV). Because the Navy requires a plane that can take off and land on an aircraft carrier, that required a special variant of the aircraft design, adding complexity to the project. Technical complexity occurs in a project using technology that is immature or where design characteristics are unknown or untried. Developing a plane that can take off on a very short runway and land vertically created may highly interdependent technological challenges to correctly locate, direct and balance the lift fans, modulate the airflow and provide equivalent amount of thrust from the downward vectored rear exhaust to lift the aircraft and at the same time control engine temperatures. These technological challenges make costing and scheduling equally challenging. Structural complexity in a project comes from the sheer numbers of elements such as the number of people, teams or organizations involved, ambiguity regarding the elements, and the massive degree of interconnectedness between them. While Lockheed Martin is the prime contractor, they are assisted in major aspects of the JSF development by Northrop Grumman, BAE Systems, Pratt & Whitney and GE/Rolls-Royce Fighter Engineer Team and innumerable subcontractors. In addition to identifying opportunities to achieve project goals, complex projects also need to identify and exploit opportunities to increase agility in response to changing stakeholder demands or to reduce project risks. Complexity Leadership Theory contends that in complex environments adaptive and enabling leadership are needed (Uhl-Bien, Marion and McKelvey, 2007). Adaptive leadership facilitates creativity, learning and adaptability, while enabling leadership handles the conflicts that inevitably arise between adaptive leadership and traditional administrative leadership (Uhl-Bien and Marion, 2007). Hence, adaptive leadership involves the recognition and opportunities to adapt, while and enabling leadership involves the exploitation of these opportunities. Our research questions revolve around the type or source of complexity and its relationship to opportunity recognition and exploitation. For example, is it only external environmental complexity that creates the need for the entrepreneurial behaviours, such as opportunity recognition and opportunity exploitation? Do the internal dimensions of project complexity, such as technological and structural complexity, also create the need for opportunity recognition and opportunity exploitation? The Kropp, Zolin and Lindsay model (2009) describes a relationship between entrepreneurial orientation (EO), opportunity recognition (OR), and opportunity exploitation (OX) in complex projects, with environmental and organizational contextual variables as moderators. We extend their model by defining the affects of external complexity and internal complexity on OR and OX. ---------- Methodology/Key Propositions: When the environment complex EO is more likely to result in OR because project members will be actively looking for solutions to problems created by environmental change. But in projects that are technologically or structurally complex project leaders and members may try to make the minimum changes possible to reduce the risk of creating new problems due to delays or schedule changes. In projects with environmental or technological complexity project leaders who encourage the innovativeness dimension of EO will increase OR in complex projects. But projects with technical or structural complexity innovativeness will not necessarily result in the recognition and exploitation of opportunities due to the over-riding importance of maintaining stability in the highly intricate and interconnected project structure. We propose that in projects with environmental complexity creating the need for change and innovation project leaders, who are willing to accept and manage risk, are more likely to identify opportunities to increase project effectiveness and efficiency. In contrast in projects with internal complexity a much higher willingness to accept risk will be necessary to trigger opportunity recognition. In structurally complex projects we predict it will be less likely to find a relationship between risk taking and OP. When the environment is complex, and a project has autonomy, they will be motivated to execute opportunities to improve the project's performance. In contrast, when the project has high internal complexity, they will be more cautious in execution. When a project experiences high competitive aggressiveness and their environment is complex, project leaders will be motivated to execute opportunities to improve the project's performance. In contrast, when the project has high internal complexity, they will be more cautious in execution. This paper reports the first stage of a three year study into the behaviours of managers, leaders and team members of complex projects. We conduct a qualitative study involving a Group Discussion with experienced project leaders. The objective is to determine how leaders of large and potentially complex projects perceive that external and internal complexity will influence the affects of EO on OR. ---------- Results and Implications: These results will help identify and distinguish the impact of external and internal complexity on entrepreneurial behaviours in NPDP. Project managers will be better able to quickly decide how and when to respond to changes in the environment and internal project events.
Resumo:
The paper investigates the relationship between pro-social norms and its implications for improved environmentsl outcomes. This is an area, which has been neglected in the environmental economic literature. We provide empirical evidence to demonstrate a small but significant positive impact between perceived environmental cooperation (reduced public littering) and increased voluntary environmental morale. For this purpose we use European Value Survey (EVS) data for 30 European countries. We also demonstrate that Western European countries are more sensitive to perceived environmental cooperation than the public in Eastern Europe. Interestingly, the results also demonstrate that environmental morale is strongly correlated with several socio-economic and environmental variables. Several robustness tests are conducted to check the validity of the results.
Resumo:
This chapter describes physical and environmental determinants of the health of Australians, providing a background to the development of successful public health activity. Health determinants are the biomedical, genetic, behavioural, socio-economic and environmental factors that impact on health and wellbeing. These determinants can be influenced by interventions and by resources and systems (AIHW 2006). Many factors combine to affect the health of individuals and communities. People’s circumstances and the environment determine whether the population is healthy or not. Factors such as where people live, the state of their environment, genetics, their education level and income, and their relationships with friends and family, all are likely to impact on their health. The determinants of population health reflect the context of people’s lives; however, people are very unlikely to be able to control many of these determinants (WHO 2007). This chapter and Chapter 6 illustrate how various determinants can relate to, and influence other determinants, as well as health and wellbeing. We believe it is particularly important to provide an understanding of determinants and their relationship to health and illness in order to provide a structure in which a broader conceptualisation of health can be placed. Determinants of health do not exist in isolation from one another. More frequently they work together in a complex system. What is clear to anyone who works in public health is that many factors impact on the health and wellbeing of people. For example, in the next chapter we discuss factors such as living and working conditions, social support, ethnicity and class, income, housing, work stress and the impact of education on the length and quality of people’s lives. In 1974, the influential ‘Lalonde Report’ (Lalonde 1974) described key factors that impact on health status. These factors included lifestyle, environment, human biology and health services. Taking a population health approach builds on the Lalonde Report, and recognises that a range of factors, such as living and working conditions and the distribution of wealth in society, interact to determine the health status of a population. Tackling health determinants has great potential to reduce the burden of disease and promote the health of the general population. In summary, we understand very clearly now that health is determined by the complex interactions between individual characteristics, social and economic factors and physical environments; the entire range of factors that impact on health must be addressed if we are to make significant gains in population health, and focussing interventions on the health of the population or significant sub-populations can achieve important health gains. In 2007, the Australian Government included in the list of National Health Priority Areas the following health issues: cancer control, injury prevention and control, cardiovascular health, diabetes mellitus, mental health, asthma, and arthritis and musculoskeletal conditions. The National Health Priority Areas set the agenda for the Commonwealth, States and Territories, Local Governments and not-for-profit organisations to place attention on those areas considered to be the major foci for action. Many of these health issues are discussed in this chapter and the following chapter.
Resumo:
In this thesis, the issue of incorporating uncertainty for environmental modelling informed by imagery is explored by considering uncertainty in deterministic modelling, measurement uncertainty and uncertainty in image composition. Incorporating uncertainty in deterministic modelling is extended for use with imagery using the Bayesian melding approach. In the application presented, slope steepness is shown to be the main contributor to total uncertainty in the Revised Universal Soil Loss Equation. A spatial sampling procedure is also proposed to assist in implementing Bayesian melding given the increased data size with models informed by imagery. Measurement error models are another approach to incorporating uncertainty when data is informed by imagery. These models for measurement uncertainty, considered in a Bayesian conditional independence framework, are applied to ecological data generated from imagery. The models are shown to be appropriate and useful in certain situations. Measurement uncertainty is also considered in the context of change detection when two images are not co-registered. An approach for detecting change in two successive images is proposed that is not affected by registration. The procedure uses the Kolmogorov-Smirnov test on homogeneous segments of an image to detect change, with the homogeneous segments determined using a Bayesian mixture model of pixel values. Using the mixture model to segment an image also allows for uncertainty in the composition of an image. This thesis concludes by comparing several different Bayesian image segmentation approaches that allow for uncertainty regarding the allocation of pixels to different ground components. Each segmentation approach is applied to a data set of chlorophyll values and shown to have different benefits and drawbacks depending on the aims of the analysis.
Resumo:
Remote monitoring of animal behaviour in the environment can assist in managing both the animal and its environmental impact. GPS collars which record animal locations with high temporal frequency allow researchers to monitor both animal behaviour and interactions with the environment. These ground-based sensors can be combined with remotely-sensed satellite images to understand animal-landscape interactions. The key to combining these technologies is communication methods such as wireless sensor networks (WSNs). We explore this concept using a case-study from an extensive cattle enterprise in northern Australia and demonstrate the potential for combining GPS collars and satellite images in a WSN to monitor behavioural preferences and social behaviour of cattle.
Resumo:
Remote monitoring of animal behaviour in the environment can assist in managing both the animal and its environmental impact. GPS collars which record animal locations with high temporal frequency allow researchers to monitor both animal behaviour and interactions with the environment. These ground-based sensors can be combined with remotely-sensed satellite images to understand animal-landscape interactions. The key to combining these technologies is communication methods such as wireless sensor networks (WSNs). We explore this concept using a case-study from an extensive cattle enterprise in northern Australia and demonstrate the potential for combining GPS collars and satellite images in a WSN to monitor behavioural preferences and social behaviour of cattle.