993 resultados para elapsed time
Resumo:
An exciting application of crowdsourcing is to use social networks in complex task execution. In this paper, we address the problem of a planner who needs to incentivize agents within a network in order to seek their help in executing an atomic task as well as in recruiting other agents to execute the task. We study this mechanism design problem under two natural resource optimization settings: (1) cost critical tasks, where the planner's goal is to minimize the total cost, and (2) time critical tasks, where the goal is to minimize the total time elapsed before the task is executed. We identify a set of desirable properties that should ideally be satisfied by a crowdsourcing mechanism. In particular, sybil-proofness and collapse-proofness are two complementary properties in our desiderata. We prove that no mechanism can satisfy all the desirable properties simultaneously. This leads us naturally to explore approximate versions of the critical properties. We focus our attention on approximate sybil-proofness and our exploration leads to a parametrized family of payment mechanisms which satisfy collapse-proofness. We characterize the approximate versions of the desirable properties in cost critical and time critical domain.
Resumo:
Laser radiation at 1.06 µm from a pulsed Nd:YAG laser was focused onto a multielement YBa2Cu3O7 target in vacuum and the plasma thus generated was studied using time-resolved spectroscopic techniques. Line broadening of the Ba I emission line at 553.5 nm was monitored as a function of time elapsed after the incidence of a laser pulse on the target. Measured line profiles of barium species were used to infer the electron density and temperature, and the time evolution of these important plasma parameters has been worked out.
Resumo:
Objectives: The stair-climbing test as measured in meters or number of steps has been proposed to predict the risk of postoperative complications. The study objective was to determine whether the stair-climbing time can predict the risk of postoperative complications. Methods: Patients aged more than 18 years with a recommendation of thoracotomy for lung resection were included in the study. Spirometry was performed according to the criteria by the American Thoracic Society. The stair-climbing test was performed on shaded stairs with a total of 12.16 m in height, and the stair-climbing time in seconds elapsed during the climb of the total height was measured. The accuracy test was applied to obtain stair-climbing time predictive values, and the receiver operating characteristic curve was calculated. Variables were tested for association with postoperative cardiopulmonary complications using the Student t test for independent populations, the Mann-Whitney test, and the chi-square or Fisher exact test. Logistic regression analysis was performed. Results: Ninety-eight patients were evaluated. Of these, 27 showed postoperative complications. Differences were found between the groups for age and attributes obtained from the stair-climbing test. The cutoff point for stair-climbing time obtained from the receiver operating characteristic curve was 37.5 seconds. No differences were found between the groups for forced expiratory volume in 1 second. In the logistic regression, stair-climbing time was the only variable associated with postoperative complications, suggesting that the risk of postoperative complications increases with increased stair-climbing time. Conclusions: The only variable showing association with complications, according to multivariate analysis, was stair-climbing time. © 2013 by The American Association for Thoracic Surgery.
Resumo:
Fundacao de Amparo a Pesquisa do Estado de sao Paulo (FAPESP)
Resumo:
Motifs of neural circuitry seem surprisingly conserved over different areas of neocortex or of paleocortex, while performing quite different sensory processing tasks. This apparent paradox may be resolved by the fact that seemingly different problems in sensory information processing are related by transformations (changes of variables) that convert one problem into another. The same basic algorithm that is appropriate to the recognition of a known odor quality, independent of the strength of the odor, can be used to recognize a vocalization (e.g., a spoken syllable), independent of whether it is spoken quickly or slowly. To convert one problem into the other, a new representation of time sequences is needed. The time that has elapsed since a recent event must be represented in neural activity. The electrophysiological hallmarks of cells that are involved in generating such a representation of time are discussed. The anatomical relationships between olfactory and auditory pathways suggest relevant experiments. The neurophysiological mechanism for the psychophysical logarithmic encoding of time duration would be of direct use for interconverting olfactory and auditory processing problems. Such reuse of old algorithms in new settings and representations is related to the way that evolution develops new biochemistry.
Resumo:
Oscillometric blood pressure (BP) monitors are currently used to diagnose hypertension both in home and clinical settings. These monitors take BP measurements once every 15 minutes over a 24 hour period and provide a reliable and accurate system that is minimally invasive. Although intermittent cuff measurements have proven to be a good indicator of BP, a continuous BP monitor is highly desirable for the diagnosis of hypertension and other cardiac diseases. However, no such devices currently exist. A novel algorithm has been developed based on the Pulse Transit Time (PTT) method, which would allow non-invasive and continuous BP measurement. PTT is defined as the time it takes the BP wave to propagate from the heart to a specified point on the body. After an initial BP measurement, PTT algorithms can track BP over short periods of time, known as calibration intervals. After this time has elapsed, a new BP measurement is required to recalibrate the algorithm. Using the PhysioNet database as a basis, the new algorithm was developed and tested using 15 patients, each tested 3 times over a period of 30 minutes. The predicted BP of the algorithm was compared to the arterial BP of each patient. It has been established that this new algorithm is capable of tracking BP over 12 minutes without the need for recalibration, using the BHS standard, a 100% improvement over what has been previously identified. The algorithm was incorporated into a new system based on its requirements and was tested using three volunteers. The results mirrored those previously observed, providing accurate BP measurements when a 12 minute calibration interval was used. This new system provides a significant improvement to the existing method allowing BP to be monitored continuously and non-invasively, on a beat-to-beat basis over 24 hours, adding major clinical and diagnostic value.
Resumo:
Diffusion equations that use time fractional derivatives are attractive because they describe a wealth of problems involving non-Markovian Random walks. The time fractional diffusion equation (TFDE) is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α ∈ (0, 1). Developing numerical methods for solving fractional partial differential equations is a new research field and the theoretical analysis of the numerical methods associated with them is not fully developed. In this paper an explicit conservative difference approximation (ECDA) for TFDE is proposed. We give a detailed analysis for this ECDA and generate discrete models of random walk suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation. The stability and convergence of the ECDA for TFDE in a bounded domain are discussed. Finally, some numerical examples are presented to show the application of the present technique.
Rainfall, Mosquito Density and the Transmission of Ross River Virus: A Time-Series Forecasting Model
Resumo:
The time for conducting Preventive Maintenance (PM) on an asset is often determined using a predefined alarm limit based on trends of a hazard function. In this paper, the authors propose using both hazard and reliability functions to improve the accuracy of the prediction particularly when the failure characteristic of the asset whole life is modelled using different failure distributions for the different stages of the life of the asset. The proposed method is validated using simulations and case studies.
Resumo:
This research work analyses techniques for implementing a cell-centred finite-volume time-domain (ccFV-TD) computational methodology for the purpose of studying microwave heating. Various state-of-the-art spatial and temporal discretisation methods employed to solve Maxwell's equations on multidimensional structured grid networks are investigated, and the dispersive and dissipative errors inherent in those techniques examined. Both staggered and unstaggered grid approaches are considered. Upwind schemes using a Riemann solver and intensity vector splitting are studied and evaluated. Staggered and unstaggered Leapfrog and Runge-Kutta time integration methods are analysed in terms of phase and amplitude error to identify which method is the most accurate and efficient for simulating microwave heating processes. The implementation and migration of typical electromagnetic boundary conditions. from staggered in space to cell-centred approaches also is deliberated. In particular, an existing perfectly matched layer absorbing boundary methodology is adapted to formulate a new cell-centred boundary implementation for the ccFV-TD solvers. Finally for microwave heating purposes, a comparison of analytical and numerical results for standard case studies in rectangular waveguides allows the accuracy of the developed methods to be assessed.