909 resultados para dopamine circuitry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

With advancing age, monkeys develop deficits in spatial working memory resembling those induced by lesions of the prefrontal cortex (PFC). Aged monkeys also exhibit marked loss of dopamine from the PFC, a transmitter known to be important for proper PFC cognitive function. Previous results suggest that D1 agonist treatment can improve spatial working memory abilities in aged monkeys. However, this research was limited by the use of drugs with either partial agonist actions or significant D2 receptor actions. In our study, the selective dopamine D1 receptor full agonists A77636 and SKF81297 were examined in aged monkeys for effects on the working memory functions of the PFC. Both compounds produced a significant, dose-related effect on delayed response performance without evidence of side effects: low doses improved performance although higher doses impaired or had no effect on performance. Both the improvement and impairment in performance were reversed by pretreatment with the D1 receptor antagonist, SCH23390. These findings are consistent with previous results demonstrating that there is a narrow range of D1 receptor stimulation for optimal PFC cognitive function, and suggest that very low doses of D1 receptor agonists may have cognitive-enhancing actions in the elderly.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role dopamine plays in decision-making has important theoretical, empirical and clinical implications. Here, we examined its precise contribution by exploiting the lesion deficit model afforded by Parkinson's disease. We studied patients in a two-stage reinforcement learning task, while they were ON and OFF dopamine replacement medication. Contrary to expectation, we found that dopaminergic drug state (ON or OFF) did not impact learning. Instead, the critical factor was drug state during the performance phase, with patients ON medication choosing correctly significantly more frequently than those OFF medication. This effect was independent of drug state during initial learning and appears to reflect a facilitation of generalization for learnt information. This inference is bolstered by our observation that neural activity in nucleus accumbens and ventromedial prefrontal cortex, measured during simultaneously acquired functional magnetic resonance imaging, represented learnt stimulus values during performance. This effect was expressed solely during the ON state with activity in these regions correlating with better performance. Our data indicate that dopamine modulation of nucleus accumbens and ventromedial prefrontal cortex exerts a specific effect on choice behaviour distinct from pure learning. The findings are in keeping with the substantial other evidence that certain aspects of learning are unaffected by dopamine lesions or depletion, and that dopamine plays a key role in performance that may be distinct from its role in learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theories of instrumental learning are centred on understanding how success and failure are used to improve future decisions. These theories highlight a central role for reward prediction errors in updating the values associated with available actions. In animals, substantial evidence indicates that the neurotransmitter dopamine might have a key function in this type of learning, through its ability to modulate cortico-striatal synaptic efficacy. However, no direct evidence links dopamine, striatal activity and behavioural choice in humans. Here we show that, during instrumental learning, the magnitude of reward prediction error expressed in the striatum is modulated by the administration of drugs enhancing (3,4-dihydroxy-L-phenylalanine; L-DOPA) or reducing (haloperidol) dopaminergic function. Accordingly, subjects treated with L-DOPA have a greater propensity to choose the most rewarding action relative to subjects treated with haloperidol. Furthermore, incorporating the magnitude of the prediction errors into a standard action-value learning algorithm accurately reproduced subjects' behavioural choices under the different drug conditions. We conclude that dopamine-dependent modulation of striatal activity can account for how the human brain uses reward prediction errors to improve future decisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role dopamine plays in decision-making has important theoretical, empirical and clinical implications. Here, we examined its precise contribution by exploiting the lesion deficit model afforded by Parkinson's disease. We studied patients in a two-stage reinforcement learning task, while they were ON and OFF dopamine replacement medication. Contrary to expectation, we found that dopaminergic drug state (ON or OFF) did not impact learning. Instead, the critical factor was drug state during the performance phase, with patients ON medication choosing correctly significantly more frequently than those OFF medication. This effect was independent of drug state during initial learning and appears to reflect a facilitation of generalization for learnt information. This inference is bolstered by our observation that neural activity in nucleus accumbens and ventromedial prefrontal cortex, measured during simultaneously acquired functional magnetic resonance imaging, represented learnt stimulus values during performance. This effect was expressed solely during the ON state with activity in these regions correlating with better performance. Our data indicate that dopamine modulation of nucleus accumbens and ventromedial prefrontal cortex exerts a specific effect on choice behaviour distinct from pure learning. The findings are in keeping with the substantial other evidence that certain aspects of learning are unaffected by dopamine lesions or depletion, and that dopamine plays a key role in performance that may be distinct from its role in learning. © 2012 The Author.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Palladium nanoparticle-loaded carbon nanofibers (Pd/CNFs) were prepared by electrospinning and subsequent thermal treatment processes. Pd/CNFs modified carbon paste electrode (Pd/CNF-CPE) displayed excellent electrochemical catalytic activities towards dopamine (DA), uric acid (UA) and ascorbic acid (AA). The oxidation overpotentials of DA, UA and AA were decreased significantly compared with those obtained at the bare CPE. Differential pulse voltammetry was used for the simultaneous determination of DA, UA and AA in their ternary mixture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel carbon-nanofiber-modified carbon-paste electrode (CNF-CPE) was employed for the simultaneous determination of dopamine (DA), ascorbic acid (AA) and uric acid (UA) with good selectivity and high sensitivity. The CNFs were prepared by combination of electrospinning technique with thermal treatment method and were used without any pretreatment. In application to determination of DA, AA and UA in the ternary mixture, the pristine CNF-CPE exhibited well-separated differential pulse voltammetric peaks with high catalytic current. Low detection limits of 0.04 mu M, 2 mu M and 0.2 mu M for DA, AA and UA were obtained, with the linear calibration curves over the concentration range 0.04-5.6 mu M, 2-64 mu M and 0.8-16.8 mu M, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-walled carbon nanohorn modified glassy carbon electrode (SWCNH-modified GCE) was first employed for the simultaneous determination of uric acid (UA), dopamine (DA), and ascorbic acid (AA). The SWCNH-modified GCE displayed excellent electrochemical catalytic activities. The oxidation overpotentials of UA, DA, and AA decrease significantly and their oxidation peak currents increase dramatically at SWCNH-modified GCE. Linear sweep voltammetry (LSV) was used for the simultaneous determination of UA, DA, and AA in their ternary mixture. The peak separations between UA and DA, and DA and AA are large up to 152 mV and 221 mV, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dopamine (2-(3,4-dihydroxyphenyl)ethylamine) is known as a natural chemical neurotransmitter and is also a cytotoxic and genotoxic molecule for cell apoptosis. In this work, the interaction of DNA with dopamine was investigated. Though the electrostatic interaction of DNA and dopamine was weak in aqueous solution, dopamine condensed circular pBR322 DNA into toroids on the mica surface cooperatively with ethanol. The formed DNA toroids came from the shrinking of DNA that was driven by ethanol-enhanced DNA-dopamine electrostatic interaction. The size of the DNA toroids could be modulated by varying the concentration of dopamine. This study offers useful information about the DNA condensation induced by monovalent cations and the sample preparation for AFM measurement and application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption of dopamine (DA) molecules on gold and their interactions with Fe3+ were studied by a microcantilever in a flow cell. The microcantilever bent toward the Au side with the adsorption of DA due to the change Of Surface stress induced by the intermolecular hydrogen bonds of DA or the charge transfer effect between adsorbates and the Substrate. The interaction process between DA adsorbates and Fe3+ was revealed by the deflection curves of microcantilever. As indicated by the appearance of a variation during the decline of curves, two steps were observed in the curve at relative high concentrations of Fe3+. In this case, Fe3+ reacted with DA molecules only in the outer layers and the complexes removed with solution. Then Fe3+ reacted further with DA molecules forming the surface complex in the first layer next to the gold. At this stage, the stability Of Surface complexes was time dependent, i.e., unstable initially and stable finally. This may be due to the surface complexes change from mono-dentate to bi-dentate complexes. In another case, i.e., at relative low concentration of Fe3+, only the first step was observed as indicated by the absence of a variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that the electrochemical oxidation of dopamine and ascorbic acid includes the proton and electron transfers at a glassy carbon electrode and their redox potentials are dependent on the pH of solution. When the concentration of the buffer is not enough to neutralize the protons produced by electrochemical oxidation of dopamine and ascorbic acid, two peaks of them can be observed in cyclic voltammograms. The height of the new peak is in proportion to the concentration of proton acceptor including HPO42-, 2,4,6-trimethylpyridine, tris (hydroxymethyl) aminomethane. Moreover, the potential of it is dependent on the type and the concentration of buffer at the same pH of bulk solution. However, this phenomenon cannot be attributed to the interaction between proton acceptor and dopamine or ascorbic acid. So, we think the phenomenon is caused by the acute change of pH at the surface of working electrode. Similar results were also observed in the rotating disk voltammograms. It can be concluded that the electrochemical behavior of some compounds is dependent on the concentration of buffer when this concentration is not enough to neutralize the protons produced in electrochemical oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The in-site functionalization of 4-aminothiophenol (4-ATP) self-assembled monolayer on gold electrode at physiological pH yields a redox active monolayer of 4'-mercapto-N-phenylquinone diimine (MNPD). The functionalized electrode exhibits excellent electrocatalytic responses towards dopamine (DA) and ascorbic acid (AA), reducing the overpotentials by about 0.22 V and 0.34 V, respectively, with greatly enhanced current responses. Due to its different catalytic activities toward DA and AA, the modified electrode resolves the overlapping voltammetric responses of DA and AA into two well-defined voltammetric peaks by differential pulse voltammetry (DPV), which can be used for the simultaneous determination of these species in a mixture. The catalytic peak current obtained from DPV was linearly related to DA and AA concentration in the ranges of 5.0 x 10-6 - 1.25 x 10-4 M and 8.0 x 10-6 - 1.3 x 10-4 M with correlation coefficient of 0.999 and 0.998, respectively. The detective limits (3sigma) for DA and AA were found to be 1.2 x 10-6 M and 2.4 x 10-6 M, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cobalt hexacyanoferrate film (CoHCF) was deposited on the surface of a glassy carbon (GC) electrode with a potential cycling procedure in the presence and absence of the cationic surfactant, cetyl trimethylammonium bromide (CTAB), to form CoHCF modified GC (CoHCF/GC) electrode. It was found that CTAB would affect the growth of the CoHCF film, the electrochemical behavior of the CoHCF film and the electrocatalytic activity of the CoHCF/GC electrode towards the electrochemical oxidation of dopamine (DA). The reasons of the electrochemical behavior of CoHCF/GC electrode influenced by CTAB were investigated using FTIR and scanning electron microscope (SEM) techniques. The apparent rate constant of electrocatalytic oxidation of DA catalyzed by CoHCF was determined using the rotating disk electrode measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuromelanin is a complex polymer pigment found primarily in the dopaminergic neurons of the human substantia nigra, whose composition is complex including production of dopamine auto-oxidation, glutathione and a variety of amino acid. Neuromelanin forms stable complex with iron (111). We observed that 5,6-dihydroxyindole and its ramification possessed strong ability of chelating iron (111), and they are the production of dopamine auto-oxidation under physiological pH condition. In the present Of L-Cysteine, the relative yields of electrochemical oxidation of dopamine also had strong ability of chelating iron (111). The experimental results suggest that 5,6-dihydroxyindole and 5-S-cysteineldopamine play important roles in the process of synthetic neuromelanin chelating iron (111).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A stable electroactive thin film of cobalt hexacyanoferrate (CoHCF) was electrochemically deposited on the surface of a glassy carbon (GC) electrode with a new and simple method. The cyclic voltammograms of the CoHCF Film modified GC (CoHCF/GC) electrode prepared by this method exhibit two pairs of well-defined redox peaks, at scan rates up to 200 mV s(-1). The advantage of this method is that it is easy to manipulate and to control the surface coverage of CoHCF on the electrode surface. The modified electrode shows good electrocatalytic activity towards the electrochemical reaction of dopamine (DA) in a 0.1 mol dm (3) KNO3 + phosphate buffer solution (pH 7.0). The rate constant of the electrocatalytic oxidation of DA at the CoHCF/GC electrode is determined by employing rotating disk electrode measurements.