335 resultados para densification


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We applied small-angle neutron scattering (SANS) and ultra small-angle neutron scattering (USANS) to monitor evolution of the CO2 adsorption in porous silica as a function of CO2 pressure and temperature in pores of different sizes. The range of pressures (0 < P < 345 bar) and temperatures (T=18 OC, 35 OC and 60 OC) corresponded to subcritical, near critical and supercritical conditions of bulk fluid. We observed that the adsorption behavior of CO2 is fundamentally different in large and small pores with the sizes D > 100 Å and D < 30 Å, respectively. Scattering data from large pores indicate formation of a dense adsorbed film of CO2 on pore walls with the liquid-like density (ρCO2)ads≈0.8 g/cm3. The adsorbed film coexists with unadsorbed fluid in the inner pore volume. The density of unadsorbed fluid in large pores is temperature and pressure dependent: it is initially lower than (ρCO2)ads and gradually approaches it with pressure. In small pores compressed CO2 gas completely fills the pore volume. At the lowest pressures of the order of 10 bar and T=18 OC, the fluid density in smallest pores available in the matrix with D ~ 10 Å exceeds bulk fluid density by a factor of ~ 8. As pressure increases, progressively larger pores become filled with the condensed CO2. Fluid densification is only observed in pores with sizes less than ~ 25 – 30 Å. As the density of the invading fluid reaches (ρCO2)bulk~ 0.8 g/cm3, pores of all sizes become uniformly filled with CO2 and the confinement effects disappear. At higher densities the fluid in small pores appears to follow the equation of state of bulk CO2 although there is an indication that the fluid density in the inner volume of large pores may exceed the density of the adsorbed layer. The equivalent internal pressure (Pint) in the smallest pores exceeds the external pressure (Pext) by a factor of ~ 5 for both sub- and supercritical CO2. Pint gradually approaches Pext as D → 25 – 30 Å and is independent of temperature in the studied range of 18 OC ≤ T ≤ 60 OC. The obtained results demonstrate certain similarity as well as differences between adsorption of subcritical and supercritical CO2 in disordered porous silica. High pressure small angle scattering experiments open new opportunities for in situ studies of the fluid adsorption in porous media of interest to CO2 sequestration, energy storage, and heterogeneous catalysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on current research work with children and young people on the importance of public and private space for good health, wellbeing, social, educational and developmental outcomes. In many urban locations in Australia and elsewhere, public space is under attack from developers and attempts by authorities to control public space (Watson 2006). Private space in the home and garden-backyard is also under attack from development densification and trends towards bigger houses on smaller plots of land where gardens disappear altogether or a postage stamp remains (Gleeson and Sipe 2006). At the same time public policy advocates the benefits of outdoor exercise, set alongside fears about using public space exacerbated by notions of ‘stranger danger’ and control measures such as child and youth ‘curfews’. In this increasingly complex context, it is important to discover what children and young people value and need most in using private (home) and public space. In conjunction with the University of Otago, New Zealand, children and young people are consulted to discover how they use public space in parks and shopping centres and home space and the issues encountered and their proposals for improvement, to better inform policy debate, planning and formulation (ARACY 2009).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Urban consolidation has been a policy objective of many local and state governments in Australia for the past decade. Densification of city centres and other identified activity centres is a sensible solution to a plethora of policy objectives including: growth management, housing affordability, housing choice and infrastructure utilisation etc whilst preserving the fabric of existing neighbourhoods. However despite the plethora of supportive policies and ripe redevelopment sites, urban sprawl continues to permeate city fringes and affordable urban densification in the post GFC environment slips into the “too hard” basket. This article discusses current issues facing the development industry, highlighting factors contributing to the disequilibrium between demand and supply in the medium to high density residential markets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructures of YBa2Cu3O7-δ ceramics prepared from freeze dried powders and containing an excess of CuO have been studied by analytical electron microscopy. Special attention has been paid to the interfacial microstructure. It was found that a liquid phase formed during sintering between 890°C and 920°C and this promoted grain growth and densification. Both clean grain boundaries and boundaries containing an amorphous intergranular film, which was rich in Cu, have been observed. Both CuO and BaCuO2 were present as secondary phases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different amounts of Ru were implanted into thermally evaporated WO3 thin films by ion implantation. The films were subsequently annealed at 600oC for 2 hours in air to remove defects generated during the ion implantation. The Ru concentrations of four samples have been quantified by Rutherford Backscattering Spectrometry as 0.8, 5.5, 9 and 11.5 at%. The un-implanted WO3 films were highly porous but the porosity decreased significantly after ion implantation as observed by Transmission Electron Microscopy and Scanning Electron Microscopy. The thickness of the films also decreased with increasing Ru-ion dose, which is mainly due to densification of the porous films during ion implantation. From Raman spectroscopy two peaks at 408 and 451 cm-1 (in addition to the typical vibrational peaks of the monoclinic WO3 phase) associated with Ru were observed. Their intensity increased with increasing Ru concentration. X-Ray Photoelectron Spectroscopy showed a metallic state of Ru with binding energy of Ru 3d5/2 at 280.1 eV. This peak position remained almost unchanged with increasing Ru concentration. The resistances of the Ru-implanted films were found to increase in the presence of NO2 and NO with higher sensor response to NO2. The effect of Ru concentration on the sensing performance of the films was not explicitly observed due to reduced film thickness and porosity with increasing Ru concentration. However, the results indicate that the implantation of Ru into WO3 films with sufficient film porosity and film thickness can be beneficial for NO2 sensing at temperatures in the range of 250°C to 350°C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contrast-matching ultrasmall-angle neutron scattering (USANS) and small-angle neutron scattering (SANS) techniques were used for the first time to determine both the total pore volume and the fraction of the pore volume that is inaccessible to deuterated methane, CD4, in four bituminous coals in the range of pore sizes between ∼10 Å and ∼5 μm. Two samples originated from the Illinois Basin in the U.S.A., and the other two samples were commercial Australian bituminous coals from the Bowen Basin. The total and inaccessible porosity were determined in each coal using both Porod invariant and the polydisperse spherical particle (PDSP) model analysis of the scattering data acquired from coals both in vacuum and at the pressure of CD4, at which the scattering length density of the pore-saturating fluid is equal to that of the solid coal matrix (zero average contrast pressure). The total porosity of the coals studied ranged from 7 to 13%, and the volume of pores inaccessible to CD4 varied from ∼13 to ∼36% of the total pore volume. The volume fraction of inaccessible pores shows no correlation with the maceral composition; however, it increases with a decreasing total pore volume. In situ measurements of the structure of one coal saturated with CO2 and CD4 were conducted as a function of the pressure in the range of 1−400 bar. The neutron scattering intensity from small pores with radii less than 35 Å in this coal increased sharply immediately after the fluid injection for both gases, which demonstrates strong condensation and densification of the invading subcritical CO2 and supercritical methane in small pores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase behavior of CO2 confined in porous fractal silica with volume fraction of SiO2 φs = 0.15 was investigated using small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) techniques. The range of fluid densities (0<(FCO2)bulk<0.977 g/cm3) and temperatures (T=22 °C, 35 and 60 °C) corresponded to gaseous, liquid, near critical and supercritical conditions of the bulk fluid. The results revealed formation of a dense adsorbed phase in small pores with sizes D<40 A° at all temperatures. At low pressure (P <55 bar, (FCO2)bulk <0.2 g/cm3) the average fluid density in pores may exceed the density of bulk fluid by a factor up to 6.5 at T=22 °C. This “enrichment factor” gradually decreases with temperature, however significant fluid densification in small pores still exists at temperature T=60°C, i.e., far above the liquid-gas critical temperature of bulk CO2 (TC=31.1 °C). Larger pores are only partially filled with liquid-like adsorbed layer which coexists with unadsorbed fluid in the pore core. With increasing pressure, all pores become uniformly filled with the fluid, showing no measurable enrichment or depletion of the porous matrix with CO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have applied X-ray and neutron small-angle scattering techniques (SAXS, SANS, and USANS) to study the interaction between fluids and porous media in the particular case of subcritical CO2 sorption in coal. These techniques are demonstrated to give unique, pore-size-specific insights into the kinetics of CO2 sorption in a wide range of coal pores (nano to meso) and to provide data that may be used to determine the density of the sorbed CO2. We observed densification of the adsorbed CO2 by a factor up to five compared to the free fluid at the same (p, T) conditions. Our results indicate that details of CO2 sorption into coal pores differ greatly between different coals and depend on the amount of mineral matter dispersed in the coal matrix: a purely organic matrix absorbs more CO2 per unit volume than one containing mineral matter, but mineral matter markedly accelerates the sorption kinetics. Small pores are filled preferentially by the invading CO2 fluid and the apparent diffusion coefficients have been estimated to vary in the range from 5 × 10-7 cm2/min to more than 10-4 cm2/min, depending on the CO2 pressure and location on the sample.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Time- and position-resolved synchrotron small angle X-ray scattering data were acquired from samples of two Australian coal seams: Bulli seam (Bulli 4, Ro=1.42%, Sydney Basin), which naturally contains CO2 and Baralaba seam (Ro=0.67%, Bowen Basin), a potential candidate for sequestering CO2. This experimental approach has provided unique, pore-size-specific insights into the kinetics of CO2 sorption in the micro- and small mesopores (diameter 5 to 175 Å) and the density of the sorbed CO2 at reservoir-like conditions of temperature and hydrostatic pressure. For both samples, at pressures above 5 bar, the density of CO2 confined in pores was found to be uniform, with no densification in near-wall regions. In the Bulli 4 sample, CO2 first flooded the slit pores between polyaromatic sheets. In the pore-size range analysed, the confined CO2 density was close to that of the free CO2. The kinetics data are too noisy for reliable quantitative analysis, but qualitatively indicate faster kinetics in mineral-matter-rich regions. In the Baralaba sample, CO2 preferentially invaded the smallest micropores and the confined CO2 density was up to five times that of the free CO2. Faster CO2 sorption kinetics was found to be correlated with higher mineral matter content but, the mineral-matter-rich regions had lower-density CO2 confined in their pores. Remarkably, the kinetics was pore-size dependent, being faster for smaller pores. These results suggest that injection into the permeable section of an interbedded coal-clastic sequence could provide a viable combination of reasonable injectivity and high sorption capacity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At the 2012 CDIO conference, it was clear to all that engineering for 21st Century challenges and opportunities will be critical to the success of society over the next 2-3 decades, in dealing with pressures including climate change, resource depletion and urban densification. Within this context there is a growing imperative for rapid curriculum renewal towards education for sustainable development across all types and disciplines of engineering education, around the world. Building on a paper presented by these authors at the 2012 CDIO conference, this 2013 roundtable will draw on participants’ experiences to discuss how sustainability knowledge and skills can be embedded within a CDIO-based program using a holistic approach to curriculum renewal. The highly interactive and dynamic session will include two parts: 1) a short presentation from the chairs of the roundtable on an emergent model for rapid curriculum renewal; and 2) a facilitated discussion with participants about challenges and opportunities for action. Session notes will be recorded for distribution among participants following the conference.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose – Rapid urbanisation, fragmented governance and recurrent flooding complicates resolution of DKI Jakarta’s chronic housing shortage. Failure to effectively implement planning decisionmaking processes poses potential human rights violations. Contemporary planning policy requires the relocation of households living in floodplains within fifteen metres of DKI Jakarta’s main watercourses; further constraining land availability and potentially requiring increased densification. The purpose of this paper is to re-frame planning decision-making to address risks of flooding and to increase community resilience. Design/methodology/approach – This paper presents a preliminary scoping study for a technologically enhanced participatory planning method, incorporating synthesis of existing information on urbanisation, governance, and flood risk management in Jakarta. Findings – Responsibility for flood risk management in DKI Jakarta is fragmented both within and across administrative boundaries. Decision-making is further complicated by: limited availability of land use data; uncertainty as to the delineated extent of watercourses, floodplains, and flood modelling; unclear risk and liability for infrastructure investments; and technical literacy of both public and government participants. Practical implications – This research provides information to facilitate consultation with government entities tasked with re-framing planning processes to increase public participation. Social implications – Reduction in risk exposure amongst DKI Jakarta’s most vulnerable populations addresses issues of social justice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biophilic urbanism, or urban design that reflects humanity’s innate need for nature, stands to make significant contributions to a range of national, state and local government policies related to climate change mitigation and adaptation, by investigating ways in which nature can be integrated into, around and on top of buildings. Potential benefits of such design include reducing the heat island effect, reducing energy consumption for thermal control, enhancing urban biodiversity, improving well being and productivity, improving water cycle management, and assisting in the response to growing needs for densification and revitalisation of cities. This report will give an overview of the concept of biophilia and consider enablers and disablers to its application to urban planning and design. The paper will present findings from stakeholder engagement and a series of detailed case studies, related to a consideration of the economics of the use of biophilic elements (direct and indirect).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium dioxide (TiO2) nanotube arrays are attracting increasing attention for use in solar cells, lithium-ion batteries, and biomedical implants. To take full advantage of their unique physical properties, such arrays need to maintain adequate mechanical integrity in applications. However, the mechanical performance of TiO2 nanotube arrays is not well understood. In this work, we investigate the deformation and failure of TiO2 nanotube arrays using the nanoindentation technique. We found that the load–displacement response of the arrays strongly depends on the indentation depth and indenter shape. Substrate-independent elastic modulus and hardness can be obtained when the indentation depth is less than 2.5% of the array height. The deformation mechanisms of TiO2 nanotube arrays by Berkovich and conical indenters are closely associated with the densification of TiO2 nanotubes under compression. A theoretical model for deformation of the arrays under a largeradius conical indenter is also proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, a novel pressureless solid-liquid reaction method is presented for preparation of yttrium disilicate (γ-Y2Si2O7). Single-phase γ-Y2Si2O7 powder was synthesized by calcination of SiO2 and Y2O3 powders with the addition of LiYO2 at 1400 °C for 4 h. The addition of LiYO2 significantly decreased the synthesis temperature, shortened the calcination time, and enhanced the stability of γ-Y2Si2O7. The sintering of these powders in air and O2 was studied by means of thermal mechanical analyzer. It is shown that the γ-Y2Si2O7 sintered in oxygen had a faster densification rate and a higher density than that sintered in air. Furthermore, single-phase γ-Y2Si2O7 with a density of 4.0 g/cm3 (99% of the theoretical density) was obtained by pressureless sintering at 1400 °C for 2 h in oxygen. Microstructures of the sintered samples are studied by scanning electron microscope.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dense ZrB2-ZrC and ZrB2-ZrC x∼0.67 composites have been produced by reactive hot pressing (RHP) of stoichiometric and nonstoichiometric mixtures of Zr and B4C powders at 40 MPa and temperatures up to 1600 °C for 30 minutes. The role of Ni addition on reaction kinetics and densification of the composites has been studied. Composites of ∼97 pct relative density (RD) have been produced with the stoichiometric mixture at 1600 °C, while the composite with ∼99 pct RD has been obtained with excess Zr at 1200 °C, suggesting the formation of carbon deficient ZrC x that significantly aids densification by plastic flow and vacancy diffusion mechanism. Stoichiometric and nonstoichiometric composites have a hardness of ∼20 GPa. The grain sizes of ZrB2 and ZrC x∼0.67 are ∼0.6 and 0.4 μm, respectively, which are finer than those reported in the literature.