793 resultados para cycling infrastructure
Resumo:
Protection of “critical infrastructure” has become a major issue for govern- ments worldwide. Yet in Australia, as in many other countries, including the United States, an estimated 90% of critical infrastructure is privately owned or operated commercially – in other words, critical infrastructure protection is not the exclusive domain of government. As a result, information sharing between government and the private sector has become a vitally important component of effective risk management. However, establishing effective arrangements of this kind between the public and private sector needs to take account of existing regimes of access and public disclosure which relate to government-held documents; in particular, that which is established by freedom of information (FOI) legislation. This article examines the extent to which the current Commonwealth FOI regime is likely to act as an impediment to the private sector operators of critical infrastructure participat- ing in government-operated information sharing arrangements. By examining developments in other jurisdictions, principally the United States, the article considers whether amendments to the current Australian FOI regime are necessary to ensure effective participation, consistent with the underlying object and purpose of FOI.
Resumo:
Providing precise positioning services in regional areas to support agriculture, mining, and construction sectors depends on the availability of ground continuously operating GNSS reference stations and communications linking these stations to central computers and users. With the support of CRC for Spatial Information, a more comprehensive review has been completed recently to examine various wired and wireless communication links available for precise positioning services, in particular in the Queensland regional areas. The study covers a wide range of communication technologies that are currently available, including fixed, mobile wireless, and Geo-stationary and or low earth orbiting satellites. These technologies are compared in terms of bandwidth, typical latency, reliability, coverage, and costs. Additionally, some tests were also conducted to determine the performances of different systems in the real environment. Finally, based on user application requirements, the paper discusses the suitability of different communication links.
Resumo:
Sustainable development is about making societal investments. These investments should be in synchronization with the natural environment, trends of social development, as well as organisational and local economies over a long time span. Traditionally in the eyes of clients, project development will need to produce the required profit margins, with some degrees of consideration for other impacts. This is being changed as all citizens of our society are becoming more aware of concepts and challenges such as the climate change, greenhouse footprints, and social dimensions of sustainability, and will in turn demand answers to these issues in built facilities. A large number of R&D projects have focused on the technical advancement and environmental assessment of products and built facilities. It is equally important address the cost/benefit issue, as developers in the world would not want to loose money by investing in built assets. For infrastructure projects, due to its significant cost of development and lengthy delivery time, presenting the full money story of going green is of vital importance. Traditional views of life-cycle costing tend to focus on the pure economics of a construction project. Sustainability concepts are not broadly integrated with the current LCCA in the construction sector. To rectify this problem, this paper reports on the progress to date of developing and extending contemporary LCCA models in the evaluation of road infrastructure sustainability. The suggested new model development is based on sustainability indicators identified through previous research, and incorporating industry verified cost elements of sustainability measures. The on-going project aims to design and a working model for sustainability life-cycle costing analysis for this type of infrastructure projects.
Resumo:
With growing concern over the use of the car in our urbanized society, there have emerged a number of lobby groups and professional bodies promoting a return to public transport, walking and cycling, with the urban village as the key driving land use, as a means of making our cities’ transportation systems more sustainable. This research has aimed at developing a framework applicable to the Australian setting that can facilitate increased passenger patronage of rail based urban transport systems from adjacent or associated land uses. The framework specifically tested the application of the Park & Ride and Transit Oriented Development (TOD) concepts and their applicability within the cultural, institutional, political and transit operational characteristics of Australian society. The researcher found that, although the application of the TOD concept had been limited to small pockets of town houses and mixed use developments around stations, the development industry and emerging groups within the community are posed to embrace the concept and bring with it increased rail patronage. The lack of a clear commitment to infrastructure and supporting land uses is a major barrier to the implementation of TODs. The research findings demonstrated significant scope for the size of a TOD to expand to a much greater radius of activity from the public transport interchange, than the commonly quoted 400 to 600 meters, thus incorporating many more residents and potential patrons. The provision of Park & Rides, and associated support facilities like Kiss & Rides, have followed worldwide trends of high patronage demands from the middle and outer car dependent suburbs of our cities. The data collection and analysis gathered by the researcher demonstrated that in many cases Park & Rides should form part of a TOD to ensure ease of access to rail stations by all modes and patron types. The question, however, remains how best to plan the incorporation of a Park & Ride within a TOD and still maintain those features that attract and promote TODs as a living entity.
Resumo:
Assessing the structural health state of urban infrastructure is crucial in terms of infrastructure sustainability. This chapter uses dynamic computer simulation techniques to apply a procedure using vibration-based methods for damage assessment in multiple-girder composite bridges. In addition to changes in natural frequencies, this multi-criteria procedure incorporates two methods, namely, the modal flexibility and the modal strain energy method. Using the numerically simulated modal data obtained through finite element analysis software, algorithms based on modal flexibility and modal strain energy change, before and after damage, are obtained and used as the indices for the assessment of structural health state. The feasibility and capability of the approach is demonstrated through numerical studies of a proposed structure with six damage scenarios. It is concluded that the modal strain energy method is capable of application to multiple-girder composite bridges, as evidenced through the example treated in this chapter.
Resumo:
High density development has been seen as a contribution to sustainable development. However, a number of engineering issues play a crucial role in the sustainable construction of high rise buildings. Non linear deformation of concrete has an adverse impact on high-rise buildings with complex geometries, due to differential axial shortening. These adverse effects are caused by time dependent behaviour resulting in volume change known as ‘shrinkage’, ‘creep’ and ‘elastic’ deformation. These three phenomena govern the behaviour and performance of all concrete elements, during and after construction. Reinforcement content, variable concrete modulus, volume to surface area ratio of the elements, environmental conditions, and construction quality and sequence influence on the performance of concrete elements and differential axial shortening will occur in all structural systems. Its detrimental effects escalate with increasing height and non vertical load paths resulting from geometric complexity. The magnitude of these effects has a significant impact on building envelopes, building services, secondary systems, and lifetime serviceability and performance. Analytical and test procedures available to quantify the magnitude of these effects are limited to a very few parameters and are not adequately rigorous to capture the complexity of true time dependent material response. With this in mind, a research project has been undertaken to develop an accurate numerical procedure to quantify the differential axial shortening of structural elements. The procedure has been successfully applied to quantify the differential axial shortening of a high rise building, and the important capabilities available in the procedure have been discussed. A new practical concept, based on the variation of vibration characteristic of structure during and after construction and used to quantify the axial shortening and assess the performance of structure, is presented.
Resumo:
Although the "slow" phase of pulmonary oxygen uptake (Vo2) appears to represent energetic processes in contracting muscle, electromyographic evidence tends not to support this. The present study assessed normalized integrated electromyographic (NIEMG) activity in eight muscles that act about the hip, knee and ankle during 8 min of moderate (
Resumo:
Road and highway infrastructure provides the backbone for a nation’s economic growth. The versatile dispersion of population in Australia and its resource boom, coupled with improved living standards and growing societal expectations, calls for continuing development and improvement of road infrastructure under the current local, state and federal governments’ policies and strategic plans. As road infrastructure projects involve huge resources and mechanisms, achieving sustainability not only on economic scales but also through environmental and social responsibility becomes a crucial issue. While sustainability is a logical link to infrastructure development, literature study and consultation with the industry found that there is a lack of common understanding on what constitutes sustainability in the infrastructure context. Its priorities are often interpreted differently among multiple stakeholders. For road infrastructure projects which typically span over long periods of time, achieving tangible sustainability outcomes during the lifecycle of development remains a formidable task. Sustainable development initiatives often remain ideological as in macro-level policies and broad-based concepts. There were little elaboration and exemplar cases on how these policies and concepts can be translated into practical decision-making during project implementation. In contrast, there seemed to be over commitment on research and development of sustainability assessment methods and tools. Between the two positions, there is a perception-reality gap and mismatch, specifically on how to enhance sustainability deliverables during infrastructure project delivery. Review on past research in this industry sector also found that little has been done to promote sustainable road infrastructure development; this has wide and varied potential impacts. This research identified the common perceptions and expectations by different stakeholders towards achieving sustainability in road and highway infrastructure projects. Face to face interviews on selected representatives of these stakeholders were carried out in order to select and categorize, confirm and prioritize a list of sustainability performance targets identified through literature and past research. A Delphi study was conducted with the assistance of a panel of senior industry professionals and academic experts, which further considered the interrelationship and influence of the sustainability indicators, and identified critical sustainability indicators under ten critical sustainability criteria (e.g. Environmental, Health & Safety, Resource Utilization & Management, Social & Cultural, Economic, Public Governance & Community Engagement, Relations Management, Engineering, Institutional and Project Management). This presented critical sustainability issues that needed to be addressed at the project level. Accordingly, exemplar highway development projects were used as case studies to elicit solutions for the critical issues. Through the identification and integration of different perceptions and priority needs of the stakeholders, as well as key sustainability indicators and solutions for critical issues, a set of decision-making guidelines was developed to promote and drive consistent sustainability deliverables in road infrastructure projects.
Resumo:
Aligning the motivation of contractors and consultants to perform better than ‘business-as-usual’ (BAU) on a construction project is a complex undertaking and the costs of failure are high as misalignment can compromise project outcomes. Despite the potential benefits of effective alignment, there is still little information about optimally designing procurement approaches that promote motivation towards ‘above BAU’ goals. The paper contributes to this knowledge gap by examining the negative drivers of motivation in a major construction project that, despite a wide range of performance enhancing incentives, failed to exceed BAU performance. The paper provides a case study of an iconic infrastructure project undertaken in Australia between 2002 and 2004. It is shown that incentives provided to contractors and consultants to achieve above BAU performance can be compromised by a range of negative motivation drivers including: • inequitable contractual risk allocation; • late involvement of key stakeholders; • inconsistency between contract intentions and relationship intentions; • inadequate price negotiation; • inconsistency between the project performance goals and incentive goals; •unfair and inflexible incentive performance measurement processes. Future quantitative research is planned to determine the generalisability of these results.
Resumo:
Ongoing financial, environmental and political adjustments have shifted the role of large international airports. Many airports are expanding from a narrow concentration on operating as transportation centres to becoming economic hubs. By working together, airports and other industry sectors can contribute to and facilitate not only economic prosperity, but create social advantage for local and regional areas in new ways. This transformation of the function and orientation of airports has been termed the aerotropolis or airport metropolis, where the airport is recognised as an economic centre with land uses that link local and global markets. This chapter contends that the conversion of an airport into a sustainable airport metropolis requires more than just industry clustering and the existence of hard physical infrastructure. Attention must also be directed to the creation and on-going development of social infrastructure within proximate areas and the maximisation of connectivity flows within and between infrastructure elements. It concludes that the establishment of an interactive and interdependent infrastructure trilogy of hard, soft and social infrastructures provides the necessary balance to the airport metropolis to ensure sustainable development. This chapter provides the start of an operating framework to integrate and harness the infrastructure trilogy to enable the achievement of optimal and sustainable social and economic advantage from airport cities.