927 resultados para cyclin dependent kinase Cdk1
Resumo:
The Bcr-Abl kinase inhibitor, imatinib mesylate, is the front line treatment for chronic myeloid leukaemia (CML), but the emergence of imatinib resistance has led to the search for alternative drug treatments and the examination of combination therapies to overcome imatinib resistance. The pro-apoptotic PBOX compounds are a recently developed novel series of microtubule targeting agents (MTAs) that depolymerise tubulin. Recent data demonstrating enhanced MTA-induced tumour cell apoptosis upon combination with the cyclin dependent kinase (CDK)-1 inhibitor flavopiridol prompted us to examine whether this compound could similarly enhance the effect of the PBOX compounds. We thus characterised the apoptotic and cell cycle events associated with combination therapy of the PBOX compounds and flavopiridol and results showed a sequence dependent, synergistic enhancement of apoptosis in CML cells including those expressing the imatinib-resistant T315I mutant. Flavopiridol reduced the number of polyploid cells formed in response to PBOX treatment but only to a small extent, suggesting that inhibition of endoreplication was unlikely to play a major role in the mechanism by which flavopiridol synergistically enhanced PBOX-induced apoptosis. The addition of flavopiridol following PBOX-6 treatment did however result in an accelerated exit from the G2/M transition accompanied by an enhanced downregulation and deactivation of the CDK1/cyclin B1 complex and an enhanced degradation of the inhibitor of apoptosis protein (IAP) survivin. In conclusion, results from this study highlight the potential of these novel series of PBOX compounds, alone or in sequential combination with flavopiridol, as an effective therapy against CML.
Resumo:
Quelques évidences suggèrent que Bcl-xL, un membre anti-apoptotique de la famille Bcl-2, possède également des fonctions au niveau du cycle cellulaire et de ses points-contrôle. Pour étudier la régulation et fonction de Bcl-xL au cours du cycle cellulaire, nous avons généré et exprimé dans des cellules humaines une série de mutants de phosphorylation incluant Thr41Ala, Ser43Ala, Thr47Ala, Ser49Ala, Ser56Ala, Ser62Ala et Thr115Ala. L'analyse de cette série de mutants révèle que les cellules exprimant Bcl-xL(Ser62Ala) sont moins stables au point-contrôle G2 du cycle cellulaire comparées aux cellules exprimant le type sauvage ou les autres mutants de phosphorylation incluant Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala et Thr115Ala. Les études de cinétiques de phosphorylation et de localisation de phospho-Bcl-xL(Ser62) dans des cellules synchronisées et suite à l'activation du point-contrôle en G2 médié par l'étoposide (VP16), nous indiquent que phospho-Bcl-xL(Ser62) migre dans les corps nucléolaires durant l'arrêt en G2 dans les cellules exposées au VP16. Une série d'expériences incluant des essais kinase in vitro, l'utilisation d'inhibiteurs pharmacologiques et d'ARN interférant, nous révèlent que Polo kinase 1 (PLK1) et MAPK9/JNK2 sont les protéines kinase impliquées dans la phosphorylation de Bcl-xL(Ser62), et pour son accumulation dans les corps nucléolaires pendant le point-contrôle en G2. Nos résultats indiquent que durant le point-contrôle en G2, phospho-Bcl-xL(Ser62) se lie et se co-localise avec CDK1(CDC2), le complexe cycline-kinase qui contrôle l'entrée en mitose. Nos résultats suggèrent que dans les corps nucléolaires, phospho-Bcl-xL(Ser62) stabilise l'arrêt en G2 en séquestrant CDK1(CDC2) pour retarder l'entrée en mitose. Ces résultats soulignent également que les dommages à l'ADN influencent la composition des corps nucléolaires, structure nucléaire qui émerge maintenant comme une composante importante de la réponse aux dommages à l'ADN. Dans une deuxième étude, nous décrivons que les cellules exprimant le mutant de phosphorylation Bcl-xL(Ser62Ala) sont également plus stables au point-contrôle de l'assemblage du fuseau de la chromatine (SAC) suite à une exposition au taxol, comparées aux cellules exprimant le type sauvage ou d'autres mutants de phosphorylation de Bcl-xL, incluant Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala. Cet effet est indépendent de la fonction anti-apoptotique de Bcl-xL. Bcl-xL(Ser62) est fortement phosphorylé par PLK1 et MAPK14/SAPKp38α à la prométaphase, la métaphase et à la frontière de l'anaphase, et déphosphorylé à la télophase et la cytokinèse. Phospho-Bcl-xL(Ser62) se trouve dans les centrosomes avec γ-tubuline, le long du fuseau mitotique avec la protéine moteure dynéine et dans le cytosol mitotique avec des composantes du SAC. Dans des cellules exposées au taxol, phospho-Bcl-xL(Ser62) se lie au complexe inhibiteur CDC20/MAD2/BUBR1/BUB3, alors que le mutant Bcl-xL(Ser62Ala) ne se lie pas à ce complexe. Ces résultats indiquent que durant le SAC, la phosphorylation de Bcl-xL(Ser62) accélère la résolution du SAC et l'entrée des cellules en anaphase. Des expériences bloquant l'expression de Bcl-xL révèlent ègalement un taux très élevé de cellules tétraploïdes et binuclées après un traitement au nocodazole, consistant avec une fonction de Bcl-xL durant la mitose et dans la stabilité génomique. Dans la troisième étude, l'analyse fonctionnelle de cette série de mutants de phosphorylation indique également que les cellules exprimant Bcl-xL(Ser49Ala) sont moins stables durant le point-contrôle G2 et entre en cytokinèse plus lentement dans des cellules exposées aux inhibiteurs de la polymérisation/dépolymérisation des tubulines, composantes des microtubules. Ces effets de Bcl-xL(Ser49Ala) sont indépendents de sa fonction anti-apoptotique. La phosphorylation de Bcl-xL(Ser49) est dynamique au cours du cycle cellulaire. Dans des cellules synchronisées, Bcl-xL(Ser49) est phosphorylé en phase S et G2, déphosphorylé à la prométaphase, la métaphase et à la frontière de l'anaphase, et re-phosphorylé durant la télophase et la cytokinèse. Au cours du point-contrôle G2 induit par les dommages à l'ADN, un pool important de phospho-Bcl-xL(Ser49) se trouve aux centrosomes, un site important pour la régulation de l'entrée en mitose. Durant la télophase et la cytokinèse, phospho-Bcl-xL(Ser49) se trouve le long des microtubules avec la protéine moteure dynéine et dans le cytosol mitotique. Finalement, nos résultats suggèrent que PLK3 est responsable de la phosphorylation de Bcl-xL(Ser49), une protéine kinase impliquée pour l'entrée des cellules en mitose et pour la progression de la mitose jusqu'à la division cellulaire.
Resumo:
Chez la levure Saccharomyces cerevisiae, l'acétylation de l'histone H3 sur la lysine 56 (H3K56ac) est présente sur les histones néo-synthétisées déposées derrière les fourches de réplication et est essentielle pour préserver la viabilité cellulaire en réponse au dommage à l'ADN. La désacétylation d'H3K56 sur l'ensemble du génome catalysée par Hst3 et Hst4 et a lieu en phase G2 ou M. H3K56ac est une lame à double tranchant. L'absence d'H3K56ac rend les cellules sensibles aux dommages à l'ADN. En revanche, un excès d'acétylation d'H3K56 dans un mutant hst3Δ hst4Δ a des conséquences encore plus sévères tels que la thermo-sensibilité, l'hypersensibilité aux agents génotoxiques, l'instabilité génomique ainsi qu'une courte durée de vie réplicative. Les désacétylases Hst3 et Hst4 sont étroitement régulées au cours du cycle cellulaire afin de permettre à l'H3K56ac d'exercer son rôle en réponse aux dommages à l'ADN tout en évitant les conséquences néfastes de l'hyperacétylation d'H3K56. Dans cette thèse, nous avons identifié la machinerie moléculaire responsable de la dégradation de Hst3. De plus, nous avons exploré les raisons pour lesquelles l'absence de désacétylation donne lieu aux phénotypes du mutant hst3Δ hst4Δ. Au chapitre 2, nous démontrons que la dégradation d'Hst3 peut être complétée avant l'anaphase. Ceci suggère que la désacétylation de H3K56 a lieu durant une courte fenêtre du cycle cellulaire se situant entre la complétion de la phase S et la métaphase. De plus, nous avons identifié deux sites de phosphorylation d'Hst3 par la kinase cycline-dépendante 1 (Cdk1) et démontré que ces évènements de phosphorylation conduisent à la dégradation d'Hst3 in vivo. Nous avons aussi démontré que l'ubiquityltransférase Cdc34 et l'ubiquitine ligase SCFCdc4 sont requises pour la dégradation d'Hst3. Finalement, nous avons montré que la phosphorylation d'Hst3 par la kinase mitotique Clb2-Cdk1 peut directement entraîner l'ubiquitylation d'Hst3 par SCFCdc4 in vitro. Au chapitre 3, nous avons étudié les mécanismes moléculaires sous-jacents à la sensibilité extrême du mutant hst3Δ hst4Δ aux agents qui endommagent l'ADN. Nous avons établi qu'en raison de la présence anormale d'H3K56ac devant les fourches de réplication, le mutant hst3Δ hst4Δ exhibe une forte perte de viabilité lorsqu'exposé au méthyl méthanesulfonate (MMS) durant un seul passage à travers la phase S. Nous avons aussi découvert que, malgré le fait que le point de contrôle de réponse aux dommages à l'ADN est activé normalement dans le mutant hst3Δ hst4Δ, ce mutant est incapable de compléter la réplication de l'ADN et d'inactiver le point de contrôle pour une longue période de temps après exposition transitoire au MMS. L'ensemble de nos résultats suggère que les lésions à l'ADN induites par le MMS dans le mutant hst3Δ hst4Δ causent une forte perte de viabilité parce que ce mutant est incapable de compléter la réplication de l'ADN après une exposition transitoire au MMS. Dans la deuxième section du chapitre 3, nous avons employé une approche génétique afin d'identifier de nouveaux mécanismes de suppression de deux phénotypes prononcés du mutant hst3Δ hst4Δ. Nous avons découvert que la délétion de plusieurs gènes impliqués dans la formation de frontières entre l'hétérochromatine et de l'euchromatine atténue les phénotypes du mutant hst3Δ hst4Δ sans réduire l'hyperacétylation d'H3K56. Nos résultats indiquent aussi que l'abondante acétylation de l'histone H4 sur la lysine 16 (H4K16ac) est néfaste au mutant hst3Δ hst4Δ. Ce résultat suggère un lien génétique intriguant entre l'acétylation d'H3K56 et celle d'H4K16. L'existence de ce lien était jusqu'à présent inconnu. Nous avons identifié un groupe de suppresseurs spontanés où H3K56ac est indétectable, mais la majorité de nos suppresseurs ne montrent aucune réduction flagrante d'H3K56ac ou d'H4 K16ac par rapport aux niveaux observés dans le mutant hst3Δ hst4Δ. Une étude plus approfondie de ce groupe de suppresseurs est susceptible de mener à la découverte de nouveaux mécanismes génétiques ou épigénétiques permettant d'éviter les conséquences catastrophiques de l'hyperacétylation d'H3K56 chez le mutant hst3Δ hst4Δ. En résumé, cette thèse identifie la machinerie moléculaire responsable de la dégradation d'Hst3 (une désacétylase d'H3K56) durant une fenêtre de temps situées entre la fin de la phase S et la métaphase. Nos résultats permettent aussi d'expliquer pourquoi la dégradation d'Hst3 précède le début de la phase S durant laquelle l'acétylation d'H3K56 s'accumule derrière les fourches de réplication afin d'exercer son rôle de mécanisme de défense contre le dommage à l'ADN. De plus, nous avons identifié plusieurs suppresseurs qui permettent de contourner le rôle important d'Hst3 et Hst4 en réponse au dommage à l'ADN. Plusieurs suppresseurs révèlent un lien génétique inattendu entre deux formes abondantes d'acétylation des histones chez Saccharomyces cerevisiae, soit H3K56ac et H4K16ac.
Resumo:
In a short communication in this issue (Manser et al. 2012), Christopher Miller’s group at the Institute of Psychiatry, King’s College London present an elegant and convincing set of experiments using molecular techniques to show that a brain-enriched membrane-associated protein kinase, lemur tyrosine kinase-2 (LMTK2), is directly phosphorylated by the cyclin-dependent kinase-5/p35 and this event is sufficient for LMTK2 to phosphorylate an abundant protein phosphatase, PP1C. LMTK2 has been little studied to date and, despite its name, is a kinase which phosphorylates serine or threonine residues of protein substrates. The paper adds to the evidence that this enzyme is a potentially important mediator positioned to integrate a number of intracellular signalling pathways relevant to neurodegeneration.
Resumo:
Background: Gamma-linolenic acid is a known inhibitor of tumour cell proliferation and migration in both in vitro and in vivo conditions. The aim of the present study was to determine the mechanisms by which gamma-linolenic acid (GLA) osmotic pump infusion alters glioma cell proliferation, and whether it affects cell cycle control and angiogenesis in the C6 glioma in vivo. Methods: Established C6 rat gliomas were treated for 14 days with 5 mM GLA in CSF or CSF alone. Tumour size was estimated, microvessel density (MVD) counted and protein and mRNA expression measured by immunohistochemistry, western blotting and RT-PCR. Results: GLA caused a significant decrease in tumour size (75 +/- 8.8%) and reduced MVD by 44 +/- 5.4%. These changes were associated with reduced expression of vascular endothelial growth factor (VEGF) (71 +/- 16%) and the VEGF receptor Flt1 (57 +/- 5.8%) but not Flk1. Expression of ERK1/2 was also reduced by 27 +/- 7.7% and 31 +/- 8.7% respectively. mRNA expression of matrix metalloproteinase-2 (MMP2) was reduced by 35 +/- 6.8% and zymography showed MMP2 proteolytic activity was reduced by 32 +/- 8.5%. GLA altered the expression of several proteins involved in cell cycle control. pRb protein expression was decreased (62 +/- 18%) while E2F1 remained unchanged. Cyclin D1 protein expression was increased by 42 +/- 12% in the presence of GLA. The cyclin dependent kinase inhibitors p21 and p27 responded differently to GLA, p27 expression was increased (27 +/- 7.3%) while p21 remained unchanged. The expression of p53 was increased (44 +/- 16%) by GLA. Finally, the BrdU incorporation studies found a significant inhibition (32 +/- 11%) of BrdU incorporation into the tumour in vivo. Conclusion: Overall the findings reported in the present study lend further support to the potential of GLA as an inhibitor of glioma cell proliferation in vivo and show it has direct effects upon cell cycle control and angiogenesis. These effects involve changes in protein expression of VEGF, Flt1, ERK1, ERK2, MMP2, Cyclin D1, pRb, p53 and p27. Combination therapy using drugs with other, complementary targets and GLA could lead to gains in treatment efficacy in this notoriously difficult to treat tumour.
Resumo:
Realizaram-se dois experimentos para avaliar a eficiência da bohemina e roscovitina associadas à ionomicina para ativação partenogenética e desenvolvimento embrionário inicial de bovinos. No primeiro, foram testadas diferentes concentrações (0, 50, 75 ou 100µM) e diferentes tempos de exposição (2, 4 ou 6 horas) à bohemina ou à roscovitina na ativação de oócitos bovinos maturados in vitro (MIV) pré-expostos à ionomicina. Os melhores tratamentos, bohemina 75µM e roscovitina 50µM, ambos por seis horas, foram utilizados no segundo experimento, no qual oócitos bovinos MIV foram expostos à ionomicina seguido ou não pelo tratamento com inibidores específicos das quinases dependentes de ciclina (CDKI), e avaliados quanto à configuração nuclear, taxa de ativação e desenvolvimento até blastocisto. Os tratamentos combinados (ionomicina+CDKI) apresentaram melhor taxa de ativação (77,3%) e desenvolvimento embrionário inicial (35,2%) do que a ionomicina sozinha (69,4% e 21,9%, respectivamente), e também promoveram ativação mais uniforme (aproximadamente 90% de formação de um pronúcleo). Estes resultados demonstram que os CDKIs potencializam o efeito da ionomicina na ativação e desenvolvimento embrionário inicial e podem auxiliar na obtenção de protocolos de ativação mais eficientes, aumentando a capacidade de desenvolvimento de embriões produzidos por meio de biotécnicas reprodutivas.
Resumo:
The phosphorylation state and corresponding activity of the retinoblastoma tumor suppressor protein (Rb) are modulated by a balance of kinase and phosphatase activities. Here we characterize the association of Rb with the catalytic subunit of protein phosphatase 1 (PP1c). A crystal structure identifies an enzyme docking site in the Rb C-terminal domain that is required for efficient PP1c activity toward Rb. The phosphatase docking site overlaps with the known docking site for cyclin-dependent kinase (Cdk), and PP1 competition with Cdk-cyclins for Rb binding is sufficient to retain Rb activity and block cell-cycle advancement. These results provide the first detailed molecular insights into Rb activation and establish a novel mechanism for Rb regulation in which kinase and phosphatase compete for substrate docking.
Resumo:
Cyclin-dependent kinases (CDKs) successively phosphorylate the retinoblastoma protein (RB) at the restriction point in G1 phase. Hyperphosphorylation results in functional inactivation of RB, activation of the E2F transcriptional program, and entry of cells into S phase. RB unphosphorylated at serine 608 has growth suppressive activity. Phosphorylation of serines 608/612 inhibits binding of E2F-1 to RB. In Nalm-6 acute lymphoblastic leukemia extracts, serine 608 is phosphorylated by CDK4/6 complexes but not by CDK2. We reasoned that phosphorylation of serines 608/612 by redundant CDKs could accelerate phospho group formation and determined which G1 CDK contributes to serine 612 phosphorylation. Here, we report that CDK4 complexes from Nalm-6 extracts phosphorylated in vitro the CDK2-preferred serine 612, which was inhibited by p16INK4a, and fascaplysin. In contrast, serine 780 and serine 795 were efficiently phosphorylated by CDK4 but not by CDK2. The data suggest that the redundancy in phosphorylation of RB by CDK2 and CDK4 in Nalm-6 extracts is limited. Serine 612 phosphorylation by CDK4 also occurred in extracts of childhood acute lymphoblastic leukemia cells but not in extracts of mobilized CD34+ hemopoietic progenitor cells. This phenomenon could contribute to the commitment of childhood acute lymphocytic leukemia cells to proliferate and explain their refractoriness to differentiation-inducing agents.
Resumo:
General transcription factor IIH (TFIIH) consists of nine sub- units: cyclin-dependent kinase 7 (Cdk7), cyclin H and MAT1 (forming the Cdk-activating-kinase or CAK complex), the two helicases Xpb/Hay and Xpd, and p34, p44, p52 and p62 (refs 1–3). As the kinase subunit of TFIIH, Cdk7 participates in basal transcription by phosphorylating the carboxy-terminal domain of the largest subunit of RNA polymerase II1,4,5. As part of CAK, Cdk7 also phosphorylates other Cdks, an essential step for their activation6–9. Here we show that the Drosophila TFIIH com- ponent Xpd negatively regulates the cell cycle function of Cdk7, the CAK activity. Excess Xpd titrates CAK activity, resulting in decreased Cdk T-loop phosphorylation, mitotic defects and lethality, whereas a decrease in Xpd results in increased CAK activity and cell proliferation. Moreover, Xpd is downregulated at the beginning of mitosis when Cdk1, a cell cycle target of Cdk7, is most active. Downregulation of Xpd thus seems to contribute to the upregulation of mitotic CAK activity and to regulate mitotic progression positively. Simultaneously, the downregulation of Xpd might be a major mechanism of mitotic silencing of basal transcription.
Resumo:
Cyclin E, in complex with cyclin dependent kinase 2 (CDK2), is a positive regulator of G1 to S phase progression of the cell cycle. Deregulation of G1/S phase transition occurs in the majority of tumors. Cyclin E is overexpressed and post-translationally generates low molecular weight (LMW) isoforms in breast cancer, but not normal cells. Such alteration of cyclin E is linked to poor prognosis. Therefore, we hypothesized that the LMW isoforms of cyclin E provide a novel mechanism of cell cycle de-regulation in cancer cells. Insect cell expression system was used to explore the biochemical properties of the cyclin E isoforms. Non-tumorigenic (76NE6) and tumorigenic (T47D) mammary epithelial cells transfected with the cyclin E isoforms and breast tumor tissue endogenously expressing the LMW isoforms were used to study the biologic consequences of the LMW isoforms of cyclin E. All model systems studied show that the LMW forms (compared to full-length cyclin E) have increased kinase activity when partnered with CDK2. Increases in the percentage of cells in S phase and colony formation were also observed after overexpression of LMW compared to full-length cyclin E. The LMW isoforms of cyclin E utilize several mechanisms to attain their hyper-activity. They bind CDK2 more efficiently, and are resistant to inhibition by cyclin dependent kinase inhibitors (CKIs) as compared to full-length cyclin E. In addition, the LMW isoforms sequester the CKIs from full-length cyclin E abrogating the overall negative regulation of cyclin E. Despite their correlation with adverse biological consequences, the direct role of the LMW isoforms of cyclin E in mediating tumorigenesis remained unanswered. Subsequent to LMW cyclin E expression in 76NE6 cells, they lose their ability to enter quiescence and exhibit genomic instability, both characteristic of a tumor cell phenotype. Furthermore, injection of 76NE6 cells overexpressing each of the cyclin E isoforms into the mammary fat pad of nude mice revealed that the LMW isoforms of cyclin E yield tumors, whereas the full-length cyclin E does not. In conclusion, the LMW isoforms of cyclin E utilize several mechanisms to acquire a hyperactive phenotype that results in deregulation of the cell cycle and initiates the tumorigenic process in otherwise non-transformed mammary epithelial cells. ^
Resumo:
Despite the importance of mitogen-activated protein kinase (MAPK) signaling in eukaryotic biology, the mechanisms by which signaling yields phenotypic changes are poorly understood. We have combined transcriptional profiling with genetics to determine how the Kss1 MAPK signaling pathway controls dimorphic development in Saccharomyces cerevisiae. This analysis identified dozens of transcripts that are regulated by the pathway, whereas previous work had identified only a single downstream target, FLO11. One of the MAPK-regulated genes is PGU1, which encodes a secreted enzyme that hydrolyzes polygalacturonic acid, a structural barrier to microbial invasion present in the natural plant substrate of S. cerevisiae. A third key transcriptional target is the G1 cyclin gene CLN1, a morphogenetic regulator that we show to be essential for pseudohyphal growth. In contrast, the homologous CLN2 cyclin gene is dispensable for development. Thus, the Kss1 MAPK cascade programs development by coordinately modulating a cell adhesion factor, a secreted host-destroying activity, and a specialized subunit of the Cdc28 cyclin-dependent kinase.
Resumo:
We have found that ectopic expression of cyclin A increases hormone-dependent and hormone-independent transcriptional activation by the estrogen receptor in vivo in a number of cell lines, including HeLa cells, U-2 OS osteosarcoma cells and Hs 578Bst breast epithelial cells. This effect can be further enhanced in HeLa cells by the concurrent expression of the cyclin-dependent kinase activator, cyclin H, and cdk7, and abolished by expression of the cdk inhibitor, p27KIP1, or by the expression of a dominant negative catalytically inactive cdk2 mutant. ER is phosphorylated between amino acids 82 and 121 in vitro by the cyclin A/cdk2 complex and incorporation of phosphate into ER is stimulated by ectopic expression of cyclin A in vivo. Together, these results strongly suggest a direct role for the cyclin A/cdk2 complex in phosphorylating ER and regulating its transcriptional activity.
Resumo:
While chemical synapses are very plastic and modifiable by defined activity patterns, gap junctions, which mediate electrical transmission, have been classically perceived as passive intercellular channels. Excitatory transmission between auditory afferents and the goldfish Mauthner cell is mediated by coexisting gap junctions and glutamatergic synapses. Although an increased intracellular Ca2+ concentration is expected to reduce gap junctional conductance, both components of the synaptic response were instead enhanced by postsynaptic increases in Ca2+ concentration, produced by patterned synaptic activity or intradendritic Ca2+ injections. The synaptically induced potentiations were blocked by intradendritic injection of KN-93, a Ca2+/calmodulin-dependent kinase (CaM-K) inhibitor, or CaM-KIINtide, a potent and specific peptide inhibitor of CaM-KII, whereas the responses were potentiated by injection of an activated form of CaM-KII. The striking similarities of the mechanisms reported here with those proposed for long-term potentiation of mammalian glutamatergic synapses suggest that gap junctions are also similarly regulated and indicate a primary role for CaM-KII in shaping and regulating interneuronal communication, regardless of its modality.
Resumo:
Development of the central nervous system requires proliferation of neuronal and glial cell precursors followed by their subsequent differentiation in a highly coordinated manner. The timing of neuronal cell cycle exit and differentiation is likely to be regulated in part by inhibitors of cyclin-dependent kinases. Overlapping and sustained patterns of expression of two cyclin-dependent kinases, p19Ink4d and p27Kip1, in postmitotic brain cells suggested that these proteins may be important in actively repressing neuronal proliferation. Animals derived from crosses of Ink4d- null with Kip1-null mice exhibited bradykinesia, proprioceptive abnormalities, and seizures, and died at about 18 days after birth. Metabolic labeling of live animals with bromodeoxyuridine at postnatal days 14 and 18, combined with immunolabeling of neuronal markers, showed that subpopulations of central nervous system neurons were proliferating in all parts of the brain, including normally dormant cells of the hippocampus, cortex, hypothalamus, pons, and brainstem. These cells also expressed phosphorylated histone H3, a marker for late G2 and M-phase progression, indicating that neurons were dividing after they had migrated to their final positions in the brain. Increased proliferation was balanced by cell death, resulting in no gross changes in the cytoarchitecture of the brains of these mice. Therefore, p19Ink4d and p27Kip1 cooperate to maintain differentiated neurons in a quiescent state that is potentially reversible.
Resumo:
In cerebellar Purkinje neurons, γ-aminobutyric acid (GABA)-mediated inhibitory synaptic transmission undergoes a long-lasting “rebound potentiation” after the activation of excitatory climbing fiber inputs. Rebound potentiation is triggered by the climbing-fiber-induced transient elevation of intracellular Ca2+ concentration and is expressed as a long-lasting increase of postsynaptic GABAA receptor sensitivity. Herein we show that inhibitors of the Ca2+/calmodulin-dependent protein kinase II (CaM-KII) signal transduction pathway effectively block the induction of rebound potentiation. These inhibitors have no effect on the once established rebound potentiation, on voltage-gated Ca2+ channel currents, or on the basal inhibitory transmission itself. Futhermore, a protein phosphatase inhibitor and the intracellularly applied CaM-KII markedly enhanced GABA-mediated currents in Purkinje neurons. Our results demonstrate that CaM-KII activation and the following phosphorylation are key steps for rebound potentiation.