986 resultados para core process
Resumo:
Nowadays solid state chemists have the possibility of work with low temperature strategies to obtain solid state materials with appropriate physical and chemical properties for useful technological applications. Photonic core shell materials having a core and shell domains composed by a variety of compounds have been synthesized by different methods. In this work we used silica-germania soot prepared by vapor-phase axial deposition as a core where a nanoshell of Eu2O3 was deposited. A new sol-gel like method was used to obtain the Eu2O3 nanoshell coating the SiO2-GeO2 particles, which was prepared by the polymeric precursor method. The photophysical properties of Eu3+ were used to obtain information about the rare earth surrounding in the SiO2-GeO2@Eu2O3 material during the sintering process. The sintering process was followed by the luminescence spectra of Eu3+ and all the samples present the characteristic emission related to the D-5(0) -> F-7(J) (J=0, 1, 2, 3 and 4). The ratios of the D-5(0) -> F-7(2)/D-5(0) -> F-7(1) emission intensity for the SiO2-GeO2@Eu2O3 systems were calculated and it was observed an increase in its values, indicating a low symmetry around the Eu3+ as the temperature increases.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective. To identify preliminary core sets of outcome variables for disease activity and damage assessment in juvenile systemic lupus erythematosus (JSLE) and juvenile dermatomyositis (JDM). Methods. Two questionnaire surveys were mailed to 267 physicians from 46 different countries asking each member to select and rank the response variables used when assessing clinical response in patients with JSLE or JDM. Next, 40 paediatric rheumatologists from 34 countries met and, using the nominal group technique, selected the domains to be included in the disease activity and damage core sets for JSLE and JDM. Results. A total of 41 response variables for JSLE and 37 response variables for JDM were selected and ranked through the questionnaire surveys. In the consensus conference, domains selected for both JSLE and JDM activity or damage core sets included the physician and parent/patient subjective assessments and a global score tool. Domains specific for JSLE activity were the immunological tests and the kidney function parameters. Concerning JDM, functional ability and muscle strength assessments were indicated for both activity and damage core sets, whereas serum muscle enzymes were included only in the activity core set. A specific paediatric domain called 'growth and development' was introduced in the disease damage core set for both diseases and the evaluation of health-related quality of life was advised in order to capture the influence of the disease on the patient lifestyle. Conclusions. We developed preliminary core sets of measures for disease activity and damage assessment in JSLE and JDM. The prospective validation of the core sets is in progress.
Resumo:
Reconfigurable computing is one of the most recent research topics in computer science. The Altera - Nios II soft-core processor can be included in a large set of reconfigurable architectures, especially because it is designed in software, allowing it to be configured according to the application. The recent growth in applications that demand reconfigurable computing made necessary the building of compilers that translate high level languages source codes into reconfigurable devices instruction sets. In this paper we present a compiler that takes as input the bytecodes generated by a Java front-end compiler and generates a set of instructions that attends to the Nios II processor instruction set rules. Our work shows how we process Java bytecodes to the intermediate code, in the Nios II instructions format, and build the control flow and the control dependence graphs. © 2009 IEEE.
Resumo:
The development of chalcogenide glasses fibers for application in the infrared wavelength region between 1 and 10 μm is a big opportunity. More particularly, the possibility to generate efficient non linear effects above 2 μm is a real challenge. We present in this work the elaboration and optical characterizations of suspended core microstructured optical fibers elaborated from the As2S3 chalcogenide glass. As an alternative to the stack and draw process a mechanical machining has been used to the elaboration of the preforms. The drawing of these preforms into fibers allows reaching a suspended core geometry, in which a 2.5 μm diameter core is linked to the fiber clad region by three supporting struts. The zero dispersion wavelength is thus shifted towards 2 μm. At 1.55 μm our fibers exhibit a dispersion around -250 ps/nm/km. Their background level of losses is below 0,5 dB/m. By pumping them at 1.55 μm with a ps source, we observe self phase modulation as well as Raman generation. Finally a strong spectral enlargement is obtained with an average output power of - 5 dbm. © 2010 SPIE.
Resumo:
In this work we report our achievements in the elaboration and optical characterizations of low-losses suspended core optical fibers elaborated from As2S3 glass. For preforms elaboration, alternatively to other processes like the stack and draw or extrusion, we use a process based on mechanical drilling. The drawing of these drilled performs into fibers allows reaching a suspended core geometry, in which a 2 μm diameter core is linked to the fiber clad region by three supporting struts. The different fibers that have been drawn show losses close to 0.9 dB/m at 1.55 μm. The suspended core waveguide geometry has also an efficient influence on the chromatic dispersion and allows its management. Indeed, the zero dispersion wavelength, which is around 5 μm in the bulk glass, is calculated to be shifted towards around 2μm in our suspended core fibers. In order to qualify their nonlinearity we have pumped them at 1.995 μm with the help of a fibered ns source. We have observed a strong non linear response with evidence of spontaneous Raman scattering and strong spectral broadening. © 2011 SPIE.
Resumo:
This study analyses business schools' incorporating environmental management issues into their core activities, defined through teaching, research, outreach and management. Taking into account the relative lack of literature on this theme, case study fieldwork is utilized. Two case studies were conducted at Brazilian business schools. The results were analyzed using the conceptual background of barriers to organizational change, transition to a more sustainable society, and path dependence. The main findings indicate that: (a) the incorporation of environmental management issues tends to begin with researching and teaching; (b) this incorporation process depends on the personal motivation of few or single faculty researchers; (c) the trajectory of the analyzed business schools is marked by advances and stagnation, when analyzing the incorporation of environmental management issues to its four core activities; (d) paradoxically, the analyzed business schools can be considered academic leaders in the field, but have had difficulties in adopting environmental management practices internally; (e) there is a path dependence effect in this process; (f) there are barriers to organizational change towards green business schools; (g) institutional entrepreneurs are important to the process of greening. This research represents the first research shedding light to understanding the process of greening of Brazilian business schools while considering the multidimensional aspects (teaching, research, outreach and university management). © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: The purpose of this study was to assess the influence of conditioning methods and thermocycling on the bond strength between composite core and resin cement. Material and Methods: Eighty blocks (8x8x4 mm) were prepared with core build-up composite. The cementation surface was roughened with 120-grit carbide paper and the blocks were thermocycled (5,000 cycles, between 5 degrees C and 55 degrees C, with a 30 s dwell time in each bath). A layer of temporary luting agent was applied. After 24 h, the layer was removed, and the blocks were divided into five groups, according to surface treatment: (NT) No treatment (control); (SP) Grinding with 120-grit carbide paper; (AC) Etching with 37% phosphoric acid; (SC) Sandblasting with 30 mm SiO2 particles, silane application; (AO) Sandblasting with 50 mu m Al2O3 particles, silane application. Two composite blocks were cemented to each other (n=8) and sectioned into sticks. Half of the specimens from each block were immediately tested for microtensile bond strength (mu TBS), while the other half was subjected to storage for 6 months, thermocycling (12,000 cycles, between 5 degrees C and 55 degrees C, with a dwell time of 30 s in each bath) and mu TBS test in a mechanical testing machine. Bond strength data were analyzed by repeated measures two-way ANOVA and Tukey test (alpha=0.05). Results: The mu TBS was significantly affected by surface treatment (p=0.007) and thermocycling (p=0.000). Before aging, the SP group presented higher bond strength when compared to NT and AC groups, whereas all the other groups were statistically similar. After aging, all the groups were statistically similar. SP submitted to thermocycling showed lower bond strength than SP without thermocycling. Conclusion: Core composites should be roughened with a diamond bur before the luting process. Thermocycling tends to reduce the bond strength between composite and resin cement.
Resumo:
Background: COX-2 is one of the most important prostaglandin involved in urologic cancer and seems to be associated with tumor progression, invasion, and metastasis. In addition, several effects have been reported for VEGF, including inducing angiogenesis, promoting cell migration, and inhibiting apoptosis. COX2 and VEGF up-regulation have been reported in human prostate cancer. Due to the importance of canine natural model for prostate cancer, the aim of this study was to evaluate COX-2 and VEGF protein expression in canine carcinogenic process. Material and Methods: Seventy-four prostatic tissues from dogs were selected to be evaluated for protein expression by immunohistochemistry (IHC), including: 10 normal prostatic tissues, 20 benign prostatic hyperplasias (BPH), 25 proliferative inflammatory atrophies (PIA) and 20 prostatic carcinomas (PCa). COX-2 and VEGF were detected using the monoclonal antibody CX-294 (1:50 dilution, Dako Cytomation and sc-53463 (1:100 dilution, Santa Cruz), respectively. The immunolabelling was performed by a polymer method (Histofine, Nichirei Biosciences). All reaction included negative controls by omitting the primary antibody. The percentage of C-MYC, E-cadherin, and p63- positive cells per lesion was evaluated according to Prowatke et al. (2007). The samples were scored separately according to staining intensity and graded semi-quantitatively as negative, weakly positive (1), moderately positive, and strongly positive. The score was done in one 400 magnification field, considering only the lesion, since this was done in a TMA core of 1 mm. For statistical analyses, the immunostaining classifications were reduced to two categories: negative and positive. The negative category included negative and weakly positive staining. Chi-square or Fisher exact test was used to determine the association between the categorical variables. Results: The COX-2 protein expression was elevated in the cytoplasm of the canine PCa and PIA compared to normal prostate (p=0.002). VEGF protein expression was increased in 94.75% of the PCa and 100% of the PIA compared with to normal prostate (p = 0.001). No difference was found when compared normal prostate with BPH. Conclusions: This study has demonstrated that the carcinogenesis of canine prostatic tissue may be related to gain of COX-2 and VEGF protein expression.
Resumo:
In the past decade the study of superparamagnetic nanoparticles has been intensively developed for many biomedical applications such as magnetically assisted drug delivery, MRI contrast agents, cells separation and hyperthermia therapy. All of these applications require nanoparticles with high magnetization, equipped also with a suitable surface coating which has to be non-toxic and biocompatible. In this master thesis, the silica coating of commercially available magnetic nanoparticles was investigated. Silica is a versatile material with many intrinsic features, such as hydrophilicity, low toxicity, proper design and derivatization yields particularly stable colloids even in physiological conditions. The coating process was applied to commercial magnetite particles dispersed in an aqueous solution. The formation of silica coated magnetite nanoparticles was performed following two main strategies: the Stöber process, in which the silica coating of the nanoparticle was directly formed by hydrolysis and condensation of suitable precursor in water-alcoholic mixtures; and the reverse microemulsions method in which inverse micelles were used to confine the hydrolysis and condensation reactions that bring to the nanoparticles formation. Between these two methods, the reverse microemulsions one resulted the most versatile and reliable because of the high control level upon monodispersity, silica shell thickness and overall particle size. Moving from low to high concentration, within the microemulsion region a gradual shift from larger particles to smaller one was detected. By increasing the amount of silica precursor the silica shell can also be tuned. Fluorescent dyes have also been incorporated within the silica shell by linking with the silica matrix. The structure of studied nanoparticles was investigated by using transmission electron microscope (TEM) and dynamic light scattering (DLS). These techniques have been used to monitor the syntetic procedures and for the final characterization of silica coated and silica dye doped nanoparticles. Finally, field dependent magnetization measurements showed the magnetic properties of core-shell nanoparticles were preserved. Due to a very well defined structure that combines magnetic and luminescent properties together with the possibility of further functionalization, these multifunctional nanoparticles are potentially useful platforms in biomedical fields such as labeling and imaging.
Resumo:
In such territories where food production is mostly scattered in several small / medium size or even domestic farms, a lot of heterogeneous residues are produced yearly, since farmers usually carry out different activities in their properties. The amount and composition of farm residues, therefore, widely change during year, according to the single production process periodically achieved. Coupling high efficiency micro-cogeneration energy units with easy handling biomass conversion equipments, suitable to treat different materials, would provide many important advantages to the farmers and to the community as well, so that the increase in feedstock flexibility of gasification units is nowadays seen as a further paramount step towards their wide spreading in rural areas and as a real necessity for their utilization at small scale. Two main research topics were thought to be of main concern at this purpose, and they were therefore discussed in this work: the investigation of fuels properties impact on gasification process development and the technical feasibility of small scale gasification units integration with cogeneration systems. According to these two main aspects, the present work was thus divided in two main parts. The first one is focused on the biomass gasification process, that was investigated in its theoretical aspects and then analytically modelled in order to simulate thermo-chemical conversion of different biomass fuels, such as wood (park waste wood and softwood), wheat straw, sewage sludge and refuse derived fuels. The main idea is to correlate the results of reactor design procedures with the physical properties of biomasses and the corresponding working conditions of gasifiers (temperature profile, above all), in order to point out the main differences which prevent the use of the same conversion unit for different materials. At this scope, a gasification kinetic free model was initially developed in Excel sheets, considering different values of air to biomass ratio and the downdraft gasification technology as particular examined application. The differences in syngas production and working conditions (process temperatures, above all) among the considered fuels were tried to be connected to some biomass properties, such elementary composition, ash and water contents. The novelty of this analytical approach was the use of kinetic constants ratio in order to determine oxygen distribution among the different oxidation reactions (regarding volatile matter only) while equilibrium of water gas shift reaction was considered in gasification zone, by which the energy and mass balances involved in the process algorithm were linked together, as well. Moreover, the main advantage of this analytical tool is the easiness by which the input data corresponding to the particular biomass materials can be inserted into the model, so that a rapid evaluation on their own thermo-chemical conversion properties is possible to be obtained, mainly based on their chemical composition A good conformity of the model results with the other literature and experimental data was detected for almost all the considered materials (except for refuse derived fuels, because of their unfitting chemical composition with the model assumptions). Successively, a dimensioning procedure for open core downdraft gasifiers was set up, by the analysis on the fundamental thermo-physical and thermo-chemical mechanisms which are supposed to regulate the main solid conversion steps involved in the gasification process. Gasification units were schematically subdivided in four reaction zones, respectively corresponding to biomass heating, solids drying, pyrolysis and char gasification processes, and the time required for the full development of each of these steps was correlated to the kinetics rates (for pyrolysis and char gasification processes only) and to the heat and mass transfer phenomena from gas to solid phase. On the basis of this analysis and according to the kinetic free model results and biomass physical properties (particles size, above all) it was achieved that for all the considered materials char gasification step is kinetically limited and therefore temperature is the main working parameter controlling this step. Solids drying is mainly regulated by heat transfer from bulk gas to the inner layers of particles and the corresponding time especially depends on particle size. Biomass heating is almost totally achieved by the radiative heat transfer from the hot walls of reactor to the bed of material. For pyrolysis, instead, working temperature, particles size and the same nature of biomass (through its own pyrolysis heat) have all comparable weights on the process development, so that the corresponding time can be differently depending on one of these factors according to the particular fuel is gasified and the particular conditions are established inside the gasifier. The same analysis also led to the estimation of reaction zone volumes for each biomass fuel, so as a comparison among the dimensions of the differently fed gasification units was finally accomplished. Each biomass material showed a different volumes distribution, so that any dimensioned gasification unit does not seem to be suitable for more than one biomass species. Nevertheless, since reactors diameters were found out quite similar for all the examined materials, it could be envisaged to design a single units for all of them by adopting the largest diameter and by combining together the maximum heights of each reaction zone, as they were calculated for the different biomasses. A total height of gasifier as around 2400mm would be obtained in this case. Besides, by arranging air injecting nozzles at different levels along the reactor, gasification zone could be properly set up according to the particular material is in turn gasified. Finally, since gasification and pyrolysis times were found to considerably change according to even short temperature variations, it could be also envisaged to regulate air feeding rate for each gasified material (which process temperatures depend on), so as the available reactor volumes would be suitable for the complete development of solid conversion in each case, without even changing fluid dynamics behaviour of the unit as well as air/biomass ratio in noticeable measure. The second part of this work dealt with the gas cleaning systems to be adopted downstream the gasifiers in order to run high efficiency CHP units (i.e. internal engines and micro-turbines). Especially in the case multi–fuel gasifiers are assumed to be used, weightier gas cleaning lines need to be envisaged in order to reach the standard gas quality degree required to fuel cogeneration units. Indeed, as the more heterogeneous feed to the gasification unit, several contaminant species can simultaneously be present in the exit gas stream and, as a consequence, suitable gas cleaning systems have to be designed. In this work, an overall study on gas cleaning lines assessment is carried out. Differently from the other research efforts carried out in the same field, the main scope is to define general arrangements for gas cleaning lines suitable to remove several contaminants from the gas stream, independently on the feedstock material and the energy plant size The gas contaminant species taken into account in this analysis were: particulate, tars, sulphur (in H2S form), alkali metals, nitrogen (in NH3 form) and acid gases (in HCl form). For each of these species, alternative cleaning devices were designed according to three different plant sizes, respectively corresponding with 8Nm3/h, 125Nm3/h and 350Nm3/h gas flows. Their performances were examined on the basis of their optimal working conditions (efficiency, temperature and pressure drops, above all) and their own consumption of energy and materials. Successively, the designed units were combined together in different overall gas cleaning line arrangements, paths, by following some technical constraints which were mainly determined from the same performance analysis on the cleaning units and from the presumable synergic effects by contaminants on the right working of some of them (filters clogging, catalysts deactivation, etc.). One of the main issues to be stated in paths design accomplishment was the tars removal from the gas stream, preventing filters plugging and/or line pipes clogging At this scope, a catalytic tars cracking unit was envisaged as the only solution to be adopted, and, therefore, a catalytic material which is able to work at relatively low temperatures was chosen. Nevertheless, a rapid drop in tars cracking efficiency was also estimated for this same material, so that an high frequency of catalysts regeneration and a consequent relevant air consumption for this operation were calculated in all of the cases. Other difficulties had to be overcome in the abatement of alkali metals, which condense at temperatures lower than tars, but they also need to be removed in the first sections of gas cleaning line in order to avoid corrosion of materials. In this case a dry scrubber technology was envisaged, by using the same fine particles filter units and by choosing for them corrosion resistant materials, like ceramic ones. Besides these two solutions which seem to be unavoidable in gas cleaning line design, high temperature gas cleaning lines were not possible to be achieved for the two larger plant sizes, as well. Indeed, as the use of temperature control devices was precluded in the adopted design procedure, ammonia partial oxidation units (as the only considered methods for the abatement of ammonia at high temperature) were not suitable for the large scale units, because of the high increase of reactors temperature by the exothermic reactions involved in the process. In spite of these limitations, yet, overall arrangements for each considered plant size were finally designed, so that the possibility to clean the gas up to the required standard degree was technically demonstrated, even in the case several contaminants are simultaneously present in the gas stream. Moreover, all the possible paths defined for the different plant sizes were compared each others on the basis of some defined operational parameters, among which total pressure drops, total energy losses, number of units and secondary materials consumption. On the basis of this analysis, dry gas cleaning methods proved preferable to the ones including water scrubber technology in al of the cases, especially because of the high water consumption provided by water scrubber units in ammonia adsorption process. This result is yet connected to the possibility to use activated carbon units for ammonia removal and Nahcolite adsorber for chloride acid. The very high efficiency of this latter material is also remarkable. Finally, as an estimation of the overall energy loss pertaining the gas cleaning process, the total enthalpy losses estimated for the three plant sizes were compared with the respective gas streams energy contents, these latter obtained on the basis of low heating value of gas only. This overall study on gas cleaning systems is thus proposed as an analytical tool by which different gas cleaning line configurations can be evaluated, according to the particular practical application they are adopted for and the size of cogeneration unit they are connected to.
Resumo:
This study focuses on the processes of change that firms undertake to overcome conditions of organizational rigidity and develop new dynamic capabilities, thanks to the contribution of external knowledge. When external contingencies highlight firms’ core rigidities, external actors can intervene in change projects, providing new competences to firms’ managers. Knowledge transfer and organizational learning processes can lead to the development of new dynamic capabilities. Existing literature does not completely explain how these processes develop and how external knowledge providers, as management consultants, influence them. Dynamic capabilities literature has become very rich in the last years; however, the models that explain how dynamic capabilities evolve are not particularly investigated. Adopting a qualitative approach, this research proposes four relevant case studies in which external actors introduce new knowledge within organizations, activating processes of change. Each case study consists of a management consulting project. Data are collected through in-depth interviews with consultants and managers. A large amount of documents supports evidences from interviews. A narrative approach is adopted to account for change processes and a synthetic approach is proposed to compare case studies along relevant dimensions. This study presents a model of capabilities evolution, supported by empirical evidence, to explain how external knowledge intervenes in capabilities evolution processes: first, external actors solve gaps between environmental demands and firms’ capabilities, changing organizational structures and routines; second, a knowledge transfer between consultants and managers leads to the creation of new ordinary capabilities; third, managers can develop new dynamic capabilities through a deliberate learning process that internalizes new tacit knowledge from consultants. After the end of the consulting project, two elements can influence the deliberate learning process: new external contingencies and changes in the perceptions about external actors.