992 resultados para cochlear implantation
Resumo:
A new hearing therapy based on direct acoustic cochlear stimulation was developed for the treatment of severe to profound mixed hearing loss. The device efficacy was validated in an initial clinical trial with four patients. This semi-implantable investigational device consists of an externally worn audio processor, a percutaneous connector, and an implantable microactuator. The actuator is placed in the mastoid bone, right behind the external auditory canal. It generates vibrations that are directly coupled to the inner ear fluids and that, therefore, bypass the external and the middle ear. The system is able to provide an equivalent sound pressure level of 125 dB over the frequency range between 125 and 8000 Hz. The hermetically sealed actuator is designed to provide maximal output power by keeping its dimensions small enough to enable implantation. A network model is used to simulate the dynamic characteristics of the actuator to adjust its transfer function to the characteristics of the middle ear. The geometry of the different actuator components is optimized using finite-element modeling.
Resumo:
A new implantable hearing system, the direct acoustic cochlear stimulator (DACS) is presented. This system is based on the principle of a power-driven stapes prosthesis and intended for the treatment of severe mixed hearing loss due to advanced otosclerosis. It consists of an implantable electromagnetic transducer, which transfers acoustic energy directly to the inner ear, and an audio processor worn externally behind the implanted ear. The device is implanted using a specially developed retromeatal microsurgical approach. After removal of the stapes, a conventional stapes prosthesis is attached to the transducer and placed in the oval window to allow direct acoustical coupling to the perilymph of the inner ear. In order to restore the natural sound transmission of the ossicular chain, a second stapes prosthesis is placed in parallel to the first one into the oval window and attached to the patient's own incus, as in a conventional stapedectomy. Four patients were implanted with an investigational DACS device. The hearing threshold of the implanted ears before implantation ranged from 78 to 101 dB (air conduction, pure tone average, 0.5-4 kHz) with air-bone gaps of 33-44 dB in the same frequency range. Postoperatively, substantial improvements in sound field thresholds, speech intelligibility as well as in the subjective assessment of everyday situations were found in all patients. Two years after the implantations, monosyllabic word recognition scores in quiet at 75 dB improved by 45-100 percent points when using the DACS. Furthermore, hearing thresholds were already improved by the second stapes prosthesis alone by 14-28 dB (pure tone average 0.5-4 kHz, DACS switched off). No device-related serious medical complications occurred and all patients have continued to use their device on a daily basis for over 2 years. Copyright (c) 2008 S. Karger AG, Basel.
Resumo:
OBJECTIVE To confirm the clinical efficacy and safety of a direct acoustic cochlear implant. STUDY DESIGN Prospective multicenter study. SETTING The study was performed at 3 university hospitals in Europe (Germany, The Netherlands, and Switzerland). PATIENTS Fifteen patients with severe-to-profound mixed hearing loss because of otosclerosis or previous failed stapes surgery. INTERVENTION Implantation with a Codacs direct acoustic cochlear implant investigational device (ID) combined with a stapedotomy with a conventional stapes prosthesis MAIN OUTCOME MEASURES Preoperative and postoperative (3 months after activation of the investigational direct acoustic cochlear implant) audiometric evaluation measuring conventional pure tone and speech audiometry, tympanometry, aided thresholds in sound field and hearing difficulty by the Abbreviated Profile of Hearing Aid Benefit questionnaire. RESULTS The preoperative and postoperative air and bone conduction thresholds did not change significantly by the implantation with the investigational Direct Acoustic Cochlear Implant. The mean sound field thresholds (0.25-8 kHz) improved significantly by 48 dB. The word recognition scores (WRS) at 50, 65, and 80 dB SPL improved significantly by 30.4%, 75%, and 78.2%, respectively, after implantation with the investigational direct acoustic cochlear implant compared with the preoperative unaided condition. The difficulty in hearing, measured by the Abbreviated Profile of Hearing Aid Benefit, decreased by 27% after implantation with the investigational direct acoustic cochlear implant. CONCLUSION Patients with moderate-to-severe mixed hearing loss because of otosclerosis can benefit substantially using the Codacs investigational device.
Resumo:
Intracochlear trauma from surgical insertion of bulky electrode arrays and inadequate pitch perception are areas of concern with current hand-assembled commercial cochlear implants. Parylene thin-film arrays with higher electrode densities and lower profiles are a potential solution, but lack rigidity and hence depend on manually fabricated permanently attached polyethylene terephthalate (PET) tubing based bulky backing devices. As a solution, we investigated a new backing device with two sub-systems. The first sub-system is a thin poly(lactic acid) (PLA) stiffener that will be embedded in the parylene array. The second sub-system is an attaching and detaching mechanism, utilizing a poly(N-vinylpyrrolidone)-block-poly(d,l-lactide) (PVP-b-PDLLA) copolymer-based biodegradable and water soluble adhesive, that will help to retract the PET insertion tool after implantation. As a proof-of-concept of sub-system one, a microfabrication process for patterning PLA stiffeners embedded in parylene has been developed. Conventional hotembossing, mechanical micromachining, and standard cleanroom processes were integrated for patterning fully released and discrete stiffeners coated with parylene. The released embedded stiffeners were thermoformed to demonstrate that imparting perimodiolar shapes to stiffener-embedded arrays will be possible. The developed process when integrated with the array fabrication process will allow fabrication of stiffener-embedded arrays in a single process. As a proof-of-concept of sub-system two, the feasibility of the attaching and detaching mechanism was demonstrated by adhering 1x and 1.5x scale PET tube-based insertion tools and PLA stiffeners embedded in parylene using the copolymer adhesive. The attached devices survived qualitative adhesion tests, thermoforming, and flexing. The viability of the detaching mechanism was tested by aging the assemblies in-vitro in phosphate buffer solution. The average detachment times, 2.6 minutes and 10 minutes for 1x and 1.5x scale devices respectively, were found to be clinically relevant with respect to the reported array insertion times during surgical implantation. Eventually, the stiffener-embedded arrays would not need to be permanently attached to current insertion tools which are left behind after implantation and congest the cochlear scala tympani chamber. Finally, a simulation-based approach for accelerated failure analysis of PLA stiffeners and characterization of PVP-b-PDLLA copolymer adhesive has been explored. The residual functional life of embedded PLA stiffeners exposed to body-fluid and thereby subjected to degradation and erosion has been estimated by simulating PLA stiffeners with different parylene coating failure types and different PLA types for a given parylene coating failure type. For characterizing the PVP-b-PDLLA copolymer adhesive, several formulations of the copolymer adhesive were simulated and compared based on the insertion tool detachment times that were predicted from the dissolution, degradation, and erosion behavior of the simulated adhesive formulations. Results indicate that the simulation-based approaches could be used to reduce the total number of time consuming and expensive in-vitro tests that must be conducted.
Resumo:
Introdution: The transcatheter aortic valve implantation in the treatment of high-risk symptomatic aortic stenosis has increased the number of implants every year. The learning curve for transcatheter aortic valve implantation has improved since the last 12 years, allowing access alternatives. The aim of this study is to approach the implantation of transcatheter aortic valve through transaortic via associated with off-pump cardiopulmonary bypass surgery in a 67-year-old man, with chronic obstructive pulmonary disease, arterial hypertension and kidney transplant. Off-pump coronary artery bypass surgery was performed and the valve in the aortic position was released successfully. There were no complications in the intraoperative and postoperative period. Gradient reduction, effective orifice increasing of the prosthesis and absence of valvular regurgitation after implantation were observed by transesophageal echocardiography. Procedural success demonstrates that implantation of transcatheter aortic valve through the ascending aorta associated with coronary artery bypass surgery without CPB is a new option for these patients.
Resumo:
To evaluate the efficacy and safety of intravitreal bevacizumab (IVB) in eyes with neovascular glaucoma (NVG) undergoing Ahmed glaucoma valve (AGV) implantation. This was a multicentre, prospective, randomized clinical trial that enrolled 40 patients with uncontrolled neovascular glaucoma that had undergone panretinal photocoagulation and required glaucoma drainage device implantation. Patients were randomized to receive IVB (1.25 mg) or not during Ahmed valve implant surgery. Injections were administered intra-operatively, and 4 and 8 weeks after surgery. After a mean follow-up of 2.25 ± 0.67 years (range 1.5-3 years), both groups showed a significant decrease in IOP (p < 0.05). There was no difference in IOP between groups except at the 18-month interval, when IOP in IVB group was significantly lower (14.57 ± 1.72 mmHg vs. 18.37 ± 1.06 mmHg - p = 0.0002). There was no difference in survival success rates between groups. At 24 months, there was a trend to patients treated with IVB using less antiglaucoma medications than the control group (p = 0.0648). Complete regression of rubeosis iridis was significantly more frequent in the IVB group (80%) than in the control group (25%) (p = 0.0015). Intravitreal bevacizumab may lead to regression of new vessels both in the iris and in the anterior chamber angle in patients with neovascular glaucoma undergoing Ahmed glaucoma valve implantation. There is a trend to slightly lower IOPs and number of medications with IVB use during AGV implantation for neovascular glaucoma.
Resumo:
The aim of this study was to evaluate the tissue compatibility of a silorane-based resin system (FiltekTM Silorane) and a methacrylate-based nanoparticle resin (FiltekTM Supreme XT) after implantation in the subcutaneous connective tissue of isogenic mice. One hundred and thirty five male isogenic BALB/c mice were randomly assigned to 12 experimental and 3 control groups, according to the implanted material and the experimental period of 7, 21 and 63 days. At the end of each period, the animals were killed and the tubes with the surrounding tissues were removed and processed for microscopic analysis. Samples were subjected to a descriptive and a semi-quantitative analyses using a 4-point scoring system (0-3) to evaluate the collagen fiber formation and inflammatory infiltrate. Data were statistically analyzed using the Kruskal Wallis test (?=0.05). The results showed that there was no significant difference between the experimental and control groups considering the three evaluation periods (p>0.05). The silorane-based and the methacrylate-based nanoparticle resins presented similar tissue response to that of the empty tube (control group) after subcutaneous implantation in isogenic mice.
Resumo:
PURPOSE: This study evaluated the inflammatory reaction caused by the implantation of iodoform and calcium hydroxide in the back of rats. These drugs may be used as intracanal dressings to eliminate residual bacteria of the root canal system. METHODS: Twenty albinic rats (Rattus norvegicus, var Wistar) were divided into four groups: control group 1 (CG1) had normal skin; control group 2 (CG2) had wounded tissue without drugs; in groups 3 and 4, iodoform (IG) and calcium hydroxide (CHG) were inserted into the wounds, respectively. After 3, 5 and 11 days, slices of the implanted areas were macroscopically and microscopically observed regarding to their qualitative and quantitative aspects. RESULTS: In the macroscopical analysis, the CHG showed a large area of necrosis and swelling, which progressively decreased; in the IG the presence of iodoform surrounded by normal tissue was observed. The qualitative and quantitative histological analysis showed that IG promoted a shorter delay in the inflammatory response than the CHG. CONCLUSION: The inflammatory reaction for iodoform had a peak period five days after the drug insertion. By comparison, calcium hydroxide showed a very large area of necrosis that could only be partially eliminated after eleven days.
Resumo:
Two experiments evaluated an operant procedure for establishing stimulus control using auditory and electrical stimuli as a baseline for measuring the electrical current threshold of electrodes implanted in the cochlea. Twenty-one prelingually deaf children, users of cochlear implants, learned a Go/No Go auditory discrimination task (i.e., pressing a button in the presence of the stimulus but not in its absence). When the simple discrimination baseline became stable, the electrical current was manipulated in descending and ascending series according to an adapted staircase method. Thresholds were determined for three electrodes, one in each location in the cochlea (basal, medial, and apical). Stimulus control was maintained within a certain range of decreasing electrical current but was eventually disrupted. Increasing the current recovered stimulus control, thus allowing the determination of a range of electrical currents that could be defined as the threshold. The present study demonstrated the feasibility of the operant procedure combined with a psychophysical method for threshold assessment, thus contributing to the routine fitting and maintenance of cochlear implants within the limitations of a hospital setting.
Resumo:
We describe the design and implementation of a high voltage pulse power supply (pulser) that supports the operation of a repetitively pulsed filtered vacuum arc plasma deposition facility in plasma immersion ion implantation and deposition (Mepiiid) mode. Negative pulses (micropulses) of up to 20 kV in magnitude and 20 A peak current are provided in gated pulse packets (macropulses) over a broad range of possible pulse width and duty cycle. Application of the system consisting of filtered vacuum arc and high voltage pulser is demonstrated by forming diamond-like carbon (DLC) thin films with and without substrate bias provided by the pulser. Significantly enhanced film/substrate adhesion is observed when the pulser is used to induce interface mixing between the DLC film and the underlying Si substrate. (C) 2010 American Institute of Physics. [doi:10.1063/1.3518969]
Resumo:
Shallow subsurface layers of gold nanoclusters were formed in polymethylmethacrylate (PMMA) polymer by very low energy (49 eV) gold ion implantation. The ion implantation process was modeled by computer simulation and accurately predicted the layer depth and width. Transmission electron microscopy (TEM) was used to image the buried layer and individual nanoclusters; the layer width was similar to 6-8 nm and the cluster diameter was similar to 5-6 nm. Surface plasmon resonance (SPR) absorption effects were observed by UV-visible spectroscopy. The TEM and SPR results were related to prior measurements of electrical conductivity of Au-doped PMMA, and excellent consistency was found with a model of electrical conductivity in which either at low implantation dose the individual nanoclusters are separated and do not physically touch each other, or at higher implantation dose the nanoclusters touch each other to form a random resistor network (percolation model). (C) 2009 American Vacuum Society. [DOI: 10.1116/1.3231449]
Resumo:
We have investigated the fundamental structural properties of conducting thin films formed by implanting gold ions into polymethylmethacrylate (PMMA) polymer at 49 eV using a repetitively pulsed cathodic arc plasma gun. Transmission electron microscopy images of these composites show that the implanted ions form gold clusters of diameter similar to 2-12 nm distributed throughout a shallow, buried layer of average thickness 7 nm, and small angle x-ray scattering (SAXS) reveals the structural properties of the PMMA-gold buried layer. The SAXS data have been interpreted using a theoretical model that accounts for peculiarities of disordered systems.
Resumo:
A buried conducting layer of metal/polymer nanocomposite was formed by very low energy gold ion implantation into polymethylmethacrylate. The conducting layer is similar to 3 nm deep and of width similar to 1 nm. In situ resistivity measurements were performed as the implantation proceeded, and the conductivity thus obtained as a function of buried gold concentration. The measured conductivity obeys the behavior well established for composites in the percolation regime. The critical concentration, below which the polymer remains an insulator, is attained at a dose similar to 1.0 x 10(16) atoms/cm(2) of implanted gold ions. (C) 2008 American Institute of Physics.
Resumo:
Results of the surface modification of Ti-16Si-4B powder alloy by nitrogen ion implantation are presented, together with the experimental description of the preparation of that powder by high-energy ball milling and hot pressing. The phase structure, chemical composition and morphology of sample surfaces were observed by utilizing X-ray diffractometer (XRD), atomic force microscope (AFM) and scanning electron microscopy (SEM). A tribological characterization was carried out with a ball-on-disc tribometer and an SEM. Friction coefficient is compared with the one obtained for Ti-6Al-4V alloy and the wear scars characterized by SEM/EDS (energy dispersive spectroscopy). The concentration profile of the detected elements have been investigated using Auger electron spectroscopy (AES) depth profiling. Our results show that a shallow implanted layer of oxygen and nitrogen ions were obtained at the Ti-16Si -4B alloy surface, sufficient to modify slightly its tribological properties. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a relatively simple method to fabricate field-emitter arrays from silicon substrates. These devices are obtained from silicon micromachining by means of the HI-PS technique-a combination of hydrogen ion implantation and porous silicon used as sacrificial layer. Also, a new process sequence is proposed and implemented to fabricate self-aligned integrated field-emission devices based on this technique. Electrical characteristics of the microtips obtained show good agreement with the Fowler-Nordheim theory, which are suitable for the proposed application.