933 resultados para clay-sized fractions
Resumo:
Between the cities of Domodossola and Locarno, the complex ``Centovalli Line'' tectonic zone of the Central Alps outlines deformation phases over a long period of time (probably starting similar to 30 Ma ago) and under variable P-T conditions. The last deformation phases developed gouge-bearing faults with a general E-W trend that crosscuts the roots of the Alpine Canavese zone and the Finero ultramafic body. Kinematic indicators show that the general motion was mainly dextral associated with back thrusting towards the S. The <2 mu m clay fractions of fault gouges from Centovalli Line consist mainly of illite, smectite and chlorite with varied illite-smectite, chlorite-smectite and chlorite-serpentine mixed-layers. Constrained with the illite crystallinity index, the thermal conditions induced by the tectonic activity show a gradual trend from anchizonal to diagenetic conditions. The <2 and <0.2 mu M clay fractions, and hydrothermal K-feldspar separates all provide K-Ar ages between 14.2 +/- 2.9 Ma and roughly 0 Ma, with major episodes at about 12,8, 6 and close to 0 Ma These ages set the recurrent tectonic activity and the associated fluid circulations between Upper Miocene and Recent. On the basis of the K-Ar ages and with a thermal gradient of 25-30 degrees C/km, the studied fault zones were located at a depth of 4-7 km. If they were active until now as observed in field, the exhumation was approximately 2.5-3.0 km for the last 12 Ma with a mean velocity of 0.4 mm/y. Comparison with available models on the recent Alpine evolution shows that the tectonic activity in the area relates to a continuum of the back-thrusting movements of the Canavese Line, and/or to several late-extensional phases of the Rhone-Simplon line. The Centovalli-Val Vigezzo zone therefore represents a major tectonic zone of the Central-Western Alps resulting from different interacting tectonic events. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Upgrading two widely used standard plastics, polypropylene (PP) and high density polyethylene (HDPE), and generating a variety of useful engineering materials based on these blends have been the main objective of this study. Upgradation was effected by using nanomodifiers and/or fibrous modifiers. PP and HDPE were selected for modification due to their attractive inherent properties and wide spectrum of use. Blending is the engineered method of producing new materials with tailor made properties. It has the advantages of both the materials. PP has high tensile and flexural strength and the HDPE acts as an impact modifier in the resultant blend. Hence an optimized blend of PP and HDPE was selected as the matrix material for upgradation. Nanokaolinite clay and E-glass fibre were chosen for modifying PP/HDPE blend. As the first stage of the work, the mechanical, thermal, morphological, rheological, dynamic mechanical and crystallization characteristics of the polymer nanocomposites prepared with PP/HDPE blend and different surface modified nanokaolinite clay were analyzed. As the second stage of the work, the effect of simultaneous inclusion of nanokaolinite clay (both N100A and N100) and short glass fibres are investigated. The presence of nanofiller has increased the properties of hybrid composites to a greater extent than micro composites. As the last stage, micromechanical modeling of both nano and hybrid A composite is carried out to analyze the behavior of the composite under load bearing conditions. These theoretical analyses indicate that the polymer-nanoclay interfacial characteristics partially converge to a state of perfect interfacial bonding (Takayanagi model) with an iso-stress (Reuss IROM) response. In the case of hybrid composites the experimental data follows the trend of Halpin-Tsai model. This implies that matrix and filler experience varying amount of strain and interfacial adhesion between filler and matrix and also between the two fillers which play a vital role in determining the modulus of the hybrid composites.A significant observation from this study is that the requirement of higher fibre loading for efficient reinforcement of polymers can be substantially reduced by the presence of nanofiller together with much lower fibre content in the composite. Hybrid composites with both nanokaolinite clay and micron sized E-glass fibre as reinforcements in PP/HDPE matrix will generate a novel class of high performance, cost effective engineering material.
Resumo:
The location of extracellular enzymes within the soil architecture and their association with the various soil components affects their catalytic potential. A soil fractionation study was carried out to investigate: (a) the distribution of a range of hydrolytic enzymes involved in C, N and P transformations, (b) the effect of the location on their respective kinetics, (c) the effect of long-term N fertilizer management on enzyme distribution and kinetic parameters. Soil (silty clay loam) from grassland which had received 0 or 200 kg N ha(-1) yr(-1) was fractionated, and four particle-size fractions (> 200, 200-63, 63-2 and 0. 1-2 mum) were obtained by a combination of wet-sieving and centrifugation, after low-energy ultrasonication. All fractions were assayed for four carbohydrases (beta-cellobiohydrolase, N-acetyl-beta-glucosammidase, beta-glucosidase and beta-xylosidase), acid phosphatase and leucine-aminopeptidase using a microplate fluorimetric assay based on MUB-substrates. Enzyme kinetics (V-max and K-m) were estimated in three particle-size fractions and the unfractionated soil. The results showed that not all particle-size fractions were equally enzymatically active and that the distribution of enzymes between fractions depended on the enzyme. Carbohydrases predominated in the coarser fractions while phosphatase and leucine-aminopeptidase were predominant in the clay-size fraction. The Michaelis constant (K.) varied among fractions, indicating that the association of the same enzyme with different particle-size fractions affected its substrate affinity. The same values of Km were found in the same fractions from the soil under two contrasting fertilizer management regimes, indicating that the Michaelis constant was unaffected by soil changes caused by N fertilizer management. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Information on the distribution and behavior of C fractions in soil particle sizes is crucial for understanding C dynamics in soil. At present little is known about the behavior of the C associated with silt-size particles. We quantified the concentrations, distribution, and enrichment of total C (TC), readily oxidizable C (ROC), hotwater- extractable C (HWC), and cold-water-extractable C (CWC) fractions in coarse (63–20-mm), medium (20–6.3-mm), and fine (6.3–2-mm) silt-size subfractions and in coarse (2000–250 mm) and fine (250–63 mm) sand and clay (<2-mm) soil fractions isolated from bulk soil (<2 mm), and 2- to 4-mm aggregate-size fraction of surface (0–25 cm) and subsurface (25–55 cm) soils under different land uses. All measured C fractions varied significantly across all soil particle-size fractions. The highest C concentrations were associated with the <20-mm soil fractions and peaked in the medium (20–6.3-mm) and fine (6.3–2-mm) silt subfractions in most treatments. Carbon enrichment ratios (ERC) revealed the dual behavior of the C fractions associated with the medium silt-size fraction, demonstrating the simultaneous enrichment of TC and ROC, and the depletion of HWC and CWC fractions. The medium silt (20–6.3-mm) subfraction was identified in this study as a zone where the associated C fractions exhibit transitory qualities. Our results show that investigating subfractions within the silt-size particle fraction provides better understanding of the behavior of C fractions in this soil fraction.
Resumo:
Inorganic phosphorus (Pi) usually controls the P availability in tropical soils, but the contribution of organic P (Po) should not be neglected, mainly in systems with low P input or management systems that promote organic matter accumulation. The aims of this study were to evaluate the changes in the Po fractions over time in soil fertilized and not fertilized with cattle manure and to correlate Po forms with available P extracted by anion exchange resin. The experiment was carried out under field conditions, in a sandy-clay loam Haplustox. The experimental design was a 2 x 9 randomized complete block factorial design, in which the first factor was manure application (20 t ha(-1)) or absence, and the second the soil sampling times (3, 7, 14, 21, 28, 49, 70, 91, and 112 days) after manure incorporation. Labile, moderately labile and non-labile Po fractions were determined in the soil material of each sampling. Manure fertilization increased the Po levels in the moderately labile and non-labile fractions and the total organic P, but did not affect the Po fraction proportions in relation to total organic P. On average, 5.1 % of total Po was in the labile, 44.4 % in the moderately labile and 50.5 % in the non-labile fractions. Available P (resin P) was more affected by the manure soluble Pi rather than by the labile Po forms. The labile and non-labile Po fractions varied randomly with no defined trend in relation to the samplings; for this reason, the data did not fit any mathematical model.
Resumo:
Clay-containing nanocomposites of polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) copolymers having cylindrical domains were obtained by melt extrusion using a tape die. One type of sample (SEBS-MA) had maleic anhydride attached to the middle block. Two types of organoclays were added, namely Cloisite 20A and Cloisite 30B. Small angle X-ray scattering and transmission electron microscopy (TEM) analyses showed that the addition of 20A clay to SEBS and SEBS-MA resulted in nanocomposites with intercalated and partially exfoliated structures, respectively. The addition of 30B clay to SEBS and SEBS-MA promoted the formation of composites containing relatively large micron-sized and partially exfoliated clay particles, respectively. Our TEM analysis revealed that clay particles embedded in SEBS are preferably in contact with the polystyrene cylindrical domains, while in SEBS-MA they are in contact with the maleated matrix. The extrusion processing promoted alignment of the axes of the polystyrene cylinders along the extrusion direction in all samples, and the basal planes of the clay particles were mostly parallel to the main external surfaces of the extruded tapes. © 2013 Society of Chemical Industry.
Resumo:
The Opalinus Clay formation in North Switzerland is a potential host rock for a deep underground radioactive waste repository. The distribution of U-238, U-234 and Th-230 was studied in rock samples of the Opalinus Clay from an exploratory borehole at Benken (Canton of Zurich) using MC-ICP-MS. The aim of U-234 was to assess the in situ, long-term migration behaviour in this rock. Very low hydraulic conductivities of the Opalinus Clay, reducing potential of the pore water and its chemical equilibrium with the host rock are expected to render both U-238 and Th-230 immobile. If U is heterogeneously distributed in the Opalinus Clay, gradients in the supply of U-234 from the rock matrix to the pore water by the decay of U-238 will be established. Diffusive redistribution separates U-234 from its immobile parent U-238 resulting in bulk rock U-234/U-238 activity disequilibria. These may provide a means of estimating the mobility of U-234 in the rock if the diffusion rate of U-234 is significant compared to its decay rate. Sampling was carried out on two scales. Drilling of cm-spaced samples from the drill-core was done to study mobility over short distances and elucidate possible small-scale lithological control. Homogenized 25-cm-long portions of a 2-m-long drill-core section were prepared to provide information on transport over a longer distance. Variations in U and/or Th content on the cm-scale between clays and carbonate-sandy layers are revealed by beta-scanning, which shows that the (dominant) clay is richer in both elements. Samples were digested using aqua regia followed by total HF dissolution, yielding two fractions. in all studied samples U was found to be concentrated in the HF digestion fraction. It has a high U/Th ratio and a study by SEM-EDS points to sub-mu m up to several mu m in size zircon grains as the main U-rich phase. This fraction consistently has U-234/U-238 activity ratios below unity. The minute zircon grains constitute the major reservoir of U in the rock and act as constant rate suppliers of U-234 into the rock matrix and the pore water. The aqua regia leach fraction was found to be enriched in Th, and complementary to the HF fraction, having U-234/U-238 activity ratios above unity. It is believed that these U activity ratios reflect the surplus of having U-234 delivered from the zircon grains. Some cm-spaced samples show bulk rock U-234/U-238 activity ratios that are markedly out of equilibrium. In most of them a striking negative correlation between the total U content and the bulk rock U-234/U-238 activity ratios is observed. This is interpreted to indicate net U-234 transfer from regions of higher supply of U-234 towards those of lower supply which is, in most cases, equivalent to transfer from clayey towards carbonate/sandy portions of the rock. In contrast, the 25 cm averaged samples all have uniform bulk rock U-234/U-238 activity ratios in equilibrium, indicating U immobility in the last 1-1.5 Ma on this spatial scale. It is concluded that the small-scale lithological variations which govern U spatial distribution in the Opalinus Clay are the major factor determining U-234 in situ supply rates, regulating its diffusive fluxes and controlling the observed bulk rock U-234/U-238 activity ratios. A simple box-model is presented to simulate the measured bulk rock U-234/U-238 activity ratios and to give an additional insight into the studied system. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The diffusion properties of the Opalinus Clay were studied in the underground research laboratory at Mont Terri (Canton Jura, Switzerland) and the results were compared with diffusion data measured in the laboratory on small-scale samples. The diffusion of HTO, Na-22(+), Cs+ and I- were investigated for a period of 10 months. The diffusion equipment used in the field experiment was designed in such a way that a solution of tracers was circulated through a sintered metal screen placed at the end of a borehole drilled in the formation. The concentration decrease caused by the diffusion of tracers into the rock could be followed with time and allowed first estimations of the effective diffusion coefficient. After 10 months, the diffusion zone was over-cored and the tracer profiles measured. From these profiles, effective diffusion coefficients and rock capacity factors Could be extracted by applying a two-dimensional transport model including diffusion and sorption. The simulations were done with the reactive transport code CRUNCH. In addition, results obtained from through-diffusion experiments oil small-sized samples with HTO, Cl-36(-) and Na-22(+) are presented and compared with the in situ data. In all cases. excellent agreement between the two data sets exists. Results for Cs+ indicated five times higher diffusion rates relative to HTO. Corresponding laboratory diffusion measurements are still lacking. However. our Cs+ data are in qualitative agreement wish through-diffusion data for Callovo-Oxfordian argillite rock samples. which also indicate significantly higher effective diffusivities for Cs+ relative to HTO.
Resumo:
The exchangeable cation compositions of organic-poor terrigenous sediments containing smectite as primary ion exchanger from a series of holes along ODP Leg 168 transect on the eastern flank of the Juan de Fuca Ridge have been examined as a function of distance from the ridge axis and burial depth. The total cation exchange capacity (CEC) values of the sediments ranged from 2 to 59 meq/100 g, increasing with increases in the wt.% smectite. At the seafloor, the exchangeable cation compositions involving Na, K, Mg, and Ca, expressed in terms of equivalent fraction, are nearly constant regardless of the different transect sites: XNa = 0.21 ± 0.04, XK = 0.08 ± 0.01, XMg = 0.33 ± 0.09, and XCa = 0.38 ± 0.09. The calculated selectivity coefficients of the corresponding quaternary exchange reactions, calculated using porewater data, are in log units -5.45 ± 0.39 for Na, 1.97 ± 0.49 for K, 0.42 ± 0.41 for Mg, and 3.06 ± 0.69 for Ca. The exchangeable cation compositions below the seafloor change systematically with distance from the ridge crest and burial depth, conforming to the trends of the same cations in the porewaters. The selectivities for Na and Mg are roughly constant at temperatures from 2 to 66°C, indicating that the equivalent fractions of these two cations are independent of sediment alteration taking place on the ridge flank. Unlike Na and Mg, the temperature influence is significant for K and Ca, with Ca-selectivity decreases being coupled with increases in K-selectivity. Although potentially related to diagenetic and/or hydrothermal mineral precipitation or recrystallization, no evidence of such alteration was detected by XRD and TEM. In sites where upwelling of hydrothermal fluids from basement is occurring, the K-selectivity of the sediment is appreciably higher than at the other sites and corresponds to the formation of (Fe, Mg) rich smectite and zeolites. Our study indicates that local increases in K-selectivity at hydrothermal sites are caused by the formation of these authigenic minerals.
Resumo:
The reconstruction of low-latitude ocean-atmosphere interactions is one of the major issues of (paleo-)environmental studies. The trade winds, extending over 20° to 30° of latitude in both hemispheres, between the subtropical highs and the intertropical convergence zone, are major components of the atmospheric circulation and little is known about their long-term variability on geological time-scales, in particular in the Pacific sector. We present the modern spatial pattern of eolian-derived marine sediments in the eastern equatorial and subtropical Pacific (10°N to 25°S) as a reference data set for the interpretation of SE Pacific paleo-dust records. The terrigenous silt and clay fractions of 75 surface sediment samples have been investigated for their grain-size distribution and clay-mineral compositions, respectively, to identify their provenances and transport agents. Dust delivered to the southeast Pacific from the semi- to hyper-arid areas of Peru and Chile is rather fine-grained (4-8 µm) due to low-level transport within the southeast trade winds. Nevertheless, wind is the dominant transport agent and eolian material is the dominant terrigenous component west of the Peru-Chile Trench south of ~ 5°S. Grain-size distributions alone are insufficient to identify the eolian signal in marine sediments due to authigenic particle formation on the sub-oceanic ridges and abundant volcanic glass around the Galapagos Islands. Together with the clay-mineral compositions of the clay fraction, we have identified the dust lobe extending from the coasts of Peru and Chile onto Galapagos Rise as well as across the equator into the doldrums. Illite is a very useful parameter to identify source areas of dust in this smectite-dominated study area.
Resumo:
The western flank of the Great Bahama Bank, drilled during ODP Leg 166 at seven sites, represents a prograding carbonate sequence from late Oligocene to Holocene [Eberli et al., Proc. ODP Init. Reports 166 (1997)]. The signatures of the detrital input and of diagenetic alteration are evident in clay enriched intervals from the most distal Sites 1006 and 1007 in the Straits of Florida. Mineralogical and chemical investigations (XRD, TEM, SEM, ICP-MS) run on bulk rocks and on the clay fractions enable the origin and evolution of silicate parageneses to be characterized. Plio-Pleistocene silt and clay interbeds contain detrital clay assemblages comprising chlorite, illite, interstratified illite smectite, smectite, kaolinite and palygorskite. The greater smectite input within late Pliocene units than in Pleistocene oozes may relate either varying source areas or change in paleoclimatic conditions and weathering intensity. The clay intervals from Miocene-upper Oligocene wackestone sections are fairly different, with prevalent smectite in the fine fraction, whose high crystallinity and Mg contents that point towards an authigenic origin. The lower Miocene section, below 1104 mbsf, at depths where compaction features are well developed, is particularly characterized by abundant authigenic Na-K-clinoptilolite filling foraminifer tests. The authigenic smectite and clinoptilolite paragenesis is recorded by the chemical trends, both of the sediment and the interstitial fluid. This diagenetic evolution implies Si- and Mg rich fluids circulating in deeper and older sequences. For lack of any local volcaniclastic input, the genesis of zeolite and the terms of water rock interaction are discussed. The location of the diagenetic front correlates with that of the seismic sequence boundary P2 dated as 23.2 Ma. This correspondence may allow the chronostratigraphic significance of some specific seismic reflections to be reassessed.
Resumo:
The clay mineral assemblages of upper Eocene to lower Miocene sediments recovered at the CIROS-1 and MSSTS-1 drill sites on the McMurdo Sound shelf, Antarctica, were analyzed in order to reconstruct the Cenozoic Antarctic paleoclimate and ice dynamics. The assemblages are dominated by smectite and illite, with minor amounts of chlorite and kaolinite. The highest smectite amounts and best smectite crystallinities occur in the upper Eocene part of CIROS-1, below 425-445 mbsf. They indicate that during their deposition, chemical weathering conditions prevailed on the nearby continent. Large parts of East Antarctica were probably ice-free at that time, but some glaciers reached the sea and contributed to the glaciomarine sedimentation. In contrast, only minor total amounts of smectite are present in Oligocene and younger sediments due to the shift to mainly physical weathering on an ice-covered Antarctic continent. However, relative smectite percentages rise to more than 60% during two late Oligocene intervals (ca. 27.5-26.2 and 25.0-24.5 Ma) and during one early Miocene interval starting at ca. 23.3 Ma. These intervals are characterized by ice masses coming probably from the south, where volcanic rocks acted as a source, as also indicated by the composition of the sand and gravel fractions. During the other intervals, the ice came from the west, where the physical erosion of basement rocks and sedimentary rocks of the Beacon Supergroup in the Transantarctic Mountains provided high illite concentrations. Because the two drill sites are only 4 km apart, their clay mineral records can be correlated. This led to a new interpretation of the Oligocene paleomagnetic data of the MSSTS-1 site and to a more detailed lithostratigraphic correlation of the Miocene parts of the cores.
Resumo:
Carbonate oozes recovered by hydraulic piston coring at DSDP Site 586 on Ontong-Java Plateau and Site 591 on Lord Howe Rise have carbonate contents that are consistently higher than 90% with only minor variations. Consequently, paleoceanographic signals were not recorded in detail in the carbonate contents. However, mass accumulation rates of carbonate increased in the late Miocene to mid-Pliocene, reflecting an increase in productivity, then abruptly decreased from mid-Pliocene to the present. Variations in relative abundances of coarse material (foraminifers) and fine material (mostly calcareous nannofossils) do reflect histories of current winnowing and biogenic productivity at the two sites. The late Miocene from 10.5 to 6.5 m.y. ago was a time of relatively constant, quiet, pelagic sedimentation with typical southwest Pacific sedimentation rates of 20-25 m/m.y. The average coarse-fraction abundances are always higher at Site 586 than at Site 591, which reflects winnowing at Site 586. These conditions were interrupted between 6.5 to 4.0 m.y. ago when increased upwelling at the Subtropical Divergence and the Equatorial Divergence produced greater productivity of calcareous planktonic organisms. The increased productivity is suggested by large increases in both fineand coarse-fraction material and constant ratios of foraminifers to nannofossils. The maximum of productivity was about 4.0 m.y. ago. This period of increased upwelling is coincident with the inferred development of the West Antarctic ice sheet. The high productivity was followed by an abrupt increase in winnowing about 2.5 m.y. ago at Site 591, but not until about 2.0 m.y. ago at Site 586. By 2.0 m.y. ago in the late Pliocene, quiet, pelagic sedimentation conditions prevailed, similar to those of the late Miocene. The last 0.7 m.y. has been a period of relatively intense winnowing on Lord Howe Rise but not on Ontong-Java Plateau. The coarse-fraction data have both long- and short-period fluctuations. Long-period fluctuations at Site 591 average about 850 *10**3 yr./cycle and those at Site 586 average 430*10**3 yr./cycle. The highest amplitudes are found in the Pliocene and Quaternary sections. The short-period fluctuations range from 100 to 48*10**3 yr./cycle at Site 586 and from 250 to 33 *10**3 yr./cycle at Site 591. The effects of local fluctuations of productivity and winnowing have modified the primary orbital forcing signals at these two sites to yield complex paleoceanographic records.
Resumo:
The sediments of a core of.1.55 m length taken on the windward side of the Cross Bank, Florida Bay, are clearly subdivided into two portions, as shown by grain size analysis: silt-sized particles predominate in the relatively homogeneous lower two thirds of the core. This is succeeded abruptly by a thin layer of sand, containing fragments of Halimeda. They indicate a catastrophic event in the Florida Bay region, because Halimeda does not grow within Florida Bay. Above this layer, the amount of sand decreases at first and then continuously increases right to the present sediment-water-interface. The median and skewness increase simultaneously with the increase in the sand and granule portion. We assume that the changing grain size distribution was determined chiefly by the density of the marine flora: during the deposition of the lower two thirds of the core a dense grass cover acted as a sediment catcher for the fine-grained detritus washed out of the shallow basins of the Florida Bay, and simultaneously prohibited renewed reworking. Similar processes go on today on the surface of most mud banks of Florida Bay. The catastrophic event indicated by the sand layer probably changed the morphology of the bank to such an extent that the sampling point was shifted more to the windward side of the bank. This side is characterized by less dense plant growth. Therefore, less detritus could be caught and the material deposited could be reworked. The pronounced increase in skewness in the upper third of the core certainly indicates a strong washing out of the smaller-sized particles. The sediments are predominantly made up of carbonates, averagely 88.14 percent. The average CaCO3-content is 83.87 percent and the average MgCO3-content amounts to 4.27 percent. The chief carbonate mineral is aragonite making up 60.1 percent of the carbonate portion in the average, followed by high-magnesian calcite (33.8 percent) and calcite (6.1 percent). With increasing grain size the aragonite clearly increases at the cost of high-magnesian calcite in the upper third of the core. Chemically, this is shown by an increase of the CaCO3 : MgCO3-ratio. This increase is mainly caused by the more common occurrence of aragonitic fragments of mollusks in the coarse grain fractions. The bulk of the carbonates is made up of mollusks, foraminifera, ostracods, and - to a much lesser extent - of corals, worm-tubes, coccolithophorids, and calcareous algae, as shown by microscopic investigations. The total amount of the carbonate in the sediments is biogenic detritus with the possible exception of a very small amount of aragonite needles in the clay and fine silt fraction. The individual carbonate components of the gravel and sand fraction can be relatively easy identified as members of a particular animal or plant group. This becomes very difficult in the silt and clay fraction. Brownish aggregates are very common in the coarse and medium silt fraction. It was not always possible to clarify their origin (biogenic detritus, faecal pellets or carbonate particles cemented by carbonates or organic slime, etc.). Organic matter (plant fragments, rootlets), quartz, opal (siliceous sponge needles), and feldspar also occur in the sediments, besides carbonates. The lowermost part of the core has an age of 1365 +/- 90 years, as shown by 14C analysis.