976 resultados para chemical vapor desposition


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, oxide and nitride films were deposited at room temperature through the reaction of silicon Sputtered by argon and oxygen ions or argon and nitrogen ions at 250 and 350 W with 0.67 Pa pressure. It was observed that for both thin films the deposition rates increase with the applied RF power and decrease with the increase of the gas concentration. The Si/O and Si/N ratio were obtained through RBS analyses and for silicon oxide the values changed from 0.42 to 0.57 and for silicon nitride the Values changed from 0.4 to 1.03. The dielectric constants were calculated through capacitance-voltage curves with the silicon oxide values varying from 2.4 to 5.5, and silicon nitride values varying from 6.2 to 6.7, which are good options for microelectronic dielectrics. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Over the last decades, anti-resonant reflecting optical waveguides (ARROW) have been used in different integrated optics applications. In this type of waveguide, light confinement is partially achieved through an anti-resonant reflection. In this work, the simulation, fabrication and characterization of ARROW waveguides using dielectric films deposited by a plasma-enhanced chemical vapor deposition (PECVD) technique, at low temperatures(similar to 300 degrees C), are presented. Silicon oxynitride (SiO(x)N(y)) films were used as core and second cladding layers and amorphous hydrogenated silicon carbide(a-SiC:H) films as first cladding layer. Furthermore, numerical simulations were performed using homemade routines based on two computational methods: the transfer matrix method (TMM) for the determination of the optimum thickness of the Fabry-Perot layers; and the non-uniform finite difference method (NU-FDM) for 2D design and determination of the maximum width that yields single-mode operation. The utilization of a silicon carbide anti-resonant layer resulted in low optical attenuations, which is due to the high refractive index difference between the core and this layer. Finally, for comparison purposes, optical waveguides using titanium oxide (TiO(2)) as the first ARROW layer were also fabricated and characterized.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Silicon carbide thin films (Si(x)C(y)) were deposited in a RF (13.56 MHz) magnetron sputtering system using a sintered SiC target (99.5% purity). In situ doping was achieved by introducing nitrogen into the electric discharge during the growth process of the films. The N(2)/Ar flow ratio was adjusted by varying the N(2) flow rate and maintaining constant the Ar flow rate. The structure, composition and bonds formed in the nitrogen-doped Si (x) C (y) thin films were investigated by X-ray diffraction (XRD), Rutherford backscattering spectroscopy (RBS), Raman spectroscopy and Fourier transform infrared spectrometry (FTIR) techniques. RBS results indicate that the carbon content in the film decreases as the N(2)/Ar flow ratio increases. Raman spectra clearly reveal that the deposited nitrogen-doped SiC films are amorphous and exhibited C-C bonds corresponding to D and G bands. After thermal annealing, the films present structural modifications that were identified by XRD, Raman and FTIR analyses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development and fabrication of a thermo-electro-optic sensor using a Mach-Zehnder interferometer and a resistive micro-heater placed in one of the device`s arms is presented. The Mach-Zehnder structure was fabricated on a single crystal silicon substrate using silicon oxynitride and amorphous hydrogenated silicon carbide films to form an anti-resonant reflective optical waveguide. The materials were deposited by Plasma enhanced chemical vapor deposition technique at low temperatures (similar to 320 degrees C). To optimize the heat transfer and increase the device response with current variation, part of the Mach-Zehnder sensor arm was suspended through front-side bulk micromachining of the silicon substrate in a KOH solution. With the temperature variation caused by the micro-heater, the refractive index of the core layer of the optical waveguide changes due to the thermo-optic effect. Since this variation occurs only in one of the Mach-Zehnder`s arm, a phase difference between the arms is produced, leading to electromagnetic interference. In this way, the current applied to the micro-resistor can control the device output optical power. Further, reactive ion etching technique was used in this work to define the device`s geometry, and a study of SF6 based etching rates on different composition of silicon oxynitride films is also presented. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work SiOxNy films are produced and characterized. Series of samples were deposited by the plasma enhanced chemical vapor deposition (PECVD) technique at low temperatures from silane (SiH4), nitrous oxide (N2O) and helium (He) precursor gaseous mixtures, at different deposition power in order to analyze the effect of this parameter on the films structural properties, on the SiOxNy/Si interface quality and on the SiOxNy effective charge density. In order to compare the film structural properties with the interface (SiOxNy/Si) quality and effective charge density, MOS capacitors were fabricated using these films as dielectric layer. X-ray absorption near-edge spectroscopy (XANES), at the Si-K edge, was utilized to investigate the structure of the films and the material bonding characteristics were analyzed through Fourier transform infrared spectroscopy (FTIR). The MOS capacitors were characterized by low and high frequency capacitance (C-V) measurements, in order to obtain the interface state density (D-it) and the effective charge density (N-ss). An effective charge density linear reduction for decreasing deposition power was observed, result that is attributed to the smaller amount of ions present in the plasma for low RF power. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, the structure and morphology of silicon oxynitride films deposited by the PECVD technique were studied. The films were deposited under two different conditions: (a) SiOxNy with chemical compositions varying from SiO2 to Si3N4 via the control of a N2O + N-2 + SiH4 gas mixture, and (b) Si-rich SiOxNy films via the control of a N2O + SiH4 gas mixture. The analyses were performed using X-ray near edge spectroscopy (XANES) at the Si-K edge, transmission electron microscopy (TEM) and Rutherford backscattering spectroscopy (RBS). For samples with chemical composition varying from SiO2 to Si3N4, the diffraction patterns obtained by TEM exhibited changes with the chemical composition, in agreement with the XANES results. For silicon-rich silicon oxynitride samples, the formation of a-Si clusters was observed and the possibility of obtaining Si nanocrystals after annealing depending on the composition and temperature was realized. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we present the simulation, fabrication and characterization of a tunable Bragg filter employing amorphous dielectric films deposited by plasma enhanced chemical vapor deposition technique on a crystalline silicon substrate. The optical device was built using conventional microelectronic processes and consisted of fifteen periodic intervals of Si3N4 layers separated by air with appropriated thickness and lengths to produce transmittance attenuation peaks in the visible region. For this, previous simulations were realized based in the optical parameters of the dielectric film, which were extracted from ellipsometry and profilometry techniques. For the characterization of the optical interferential filter, a 633 nm monochromatic light was injected on the filter, and then the transmitted output light was collected and conducted to a detector through an optical waveguide made also of amorphous dielectric layers. Afterwards, the optical filter was mounted on a Peltier thermoelectric device in order to control the temperature of the optical device. When the temperature of filter changes, a refractive index variation is originated in the dielectric film due to the thermo-optic effect, producing a shift of attenuation peak, which can be well predicted by numerical simulations. This characteristic allows this device to be used as a thermo-optic sensor. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molecular dynamics simulations of carbon atom depositions are used to investigate energy diffusion from the impact zone. A modified Stillinger-Weber potential models the carbon interactions for both sp2 and sp3 bonding. Simulations were performed on 50 eV carbon atom depositions onto the (111) surface of a 3.8 x 3.4 x 1.0 nm diamond slab containing 2816 atoms in 11 layers of 256 atoms each. The bottom layer was thermostated to 300 K. At every 100th simulation time step (27 fs), the average local kinetic energy, and hence local temperature, is calculated. To do this the substrate is divided into a set of 15 concentric hemispherical zones, each of thickness one atomic diameter (0.14 nm) and centered on the impact point. A 50-eV incident atom heats the local impact zone above 10 000 K. After the initial large transient (200 fs) the impact zone has cooled below 3000 K, then near 1000 K by 1 ps. Thereafter the temperature profile decays approximately as described by diffusion theory, perturbed by atomic scale fluctuations. A continuum model of classical energy transfer is provided by the traditional thermal diffusion equation. The results show that continuum diffusion theory describes well energy diffusion in low energy atomic deposition processes, at distance and time scales larger than 1.5 nm and 1-2 ps, beyond which the energy decays essentially exponentially. (C) 1998 Published by Elsevier Science S.A. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

TiO2 in anatase crystal phase is a very effective catalyst in the photocatalytic oxidation of organic compounds in water. To improve the recovery rate of TiO2 photocatalysts, which in most cases are in fine powder form, the chemical vapor deposition (CVD) method was used to load TiO2 onto a bigger particle support, silica gel. The amount of titania coating was found to depend strongly on the synthesis parameters of carrier gas flow rate and coating time. XPS and nitrogen ads/desorption results showed that most of the TiO2 particles generated from CVD were distributed on the external surface of the support and the coating was stable. The photocatalytic activities of TiO2/silica gel with different amounts of titania were evaluated for the oxidation of phenol aqueous solution and compared with that of Degussa P25. The optimum titania loading rate was found around 6 wt % of the TiO2 bulk concentration. Although the activity of the best TiO2/silica gel sample was still lower than that of P25, the synthesized TiO2/silica gel catalyst can be easily separated from the treated water and was found to maintain its TiO2 content and catalytic activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports an investigation on techniques for determining elastic modulus and intrinsic stress gradient in plasma-enhanced chemical vapor deposition (PECVD) silicon nitride thin films. The elastic property of the silicon nitride thin films was determined using the nanoindentation method on silicon nitride/silicon bilayer systems. A simple empirical formula was developed to deconvolute the film elastic modulus. The intrinsic stress gradient in the films was determined by using micrometric cantilever beams, cross-membrane structures and mechanical simulation. The deflections of the silicon nitride thin film cantilever beams and cross-membranes caused by in-thickness stress gradients were measured using optical interference microscopy. Finite-element beam models were built to compute the deflection induced by the stress gradient. Matching the deflection computed under a given gradient with that measured experimentally on fabricated samples allows the stress gradient of the PECVD silicon nitride thin films introduced from the fabrication process to be evaluated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An experimental investigation of mechanical properties of thin films using nanoindentation was reported. Silicon nitride thin films with different thicknesses were deposited using plasma enhanced chemical vapor deposition (PECVD) on Si substrate. Nanoindentation was used to measure their elastic modulus and hardness. The results indicated that for a film/substrate bilayer system, the measured mechanical properties are significantly affected by the substrate properties. Empirical formulas were proposed for deconvoluting the film properties from the measured bilayer properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the in vitro osteogenic potential of subcultured human osteoblastic cells derived from alveolar bone on a titanium (Ti) surface produced by an anodized alkali treatment (BSP-AK). Primary osteoblastic cells were subcultured on BSP-AK and machined Ti discs (control) and grown for periods of up to 21 days under osteogenic conditions. Morphologic and biochemical methods were used to assess important parameters of in vitro bone-like tissue formation. Although no major differences were observed between the BSP-AK and the control Ti surface in terms of cell attachment and mineralized matrix formation, a significant increase in cell population, ALP activity, and collagen content was detected in cultures on BSP-AK surface. Our results demonstrate that human osteoblastic cells are sensitive to the BSP-AK-modified Ti surface during the transitional stage between the end of the proliferative phase and the onset of the differentiation /matrix maturation ones. Together with the good mechanical properties exhibited by the Ca- and P- coating, our findings suggest that BSP-AK treatment could be useful for the development of a new surface for dental and orthopedic implants. (c) 2008 Wiley Periodicals, Inc.J Biomed Mater Res 88A: 841-848, 2009

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent progress in the production, purification, and experimental and theoretical investigations of carbon nanotubes for hydrogen storage are reviewed. From the industrial point of view, the chemical vapor deposition process has shown advantages over laser ablation and electric-arc-discharge methods. The ultimate goal in nanotube synthesis should be to gain control over geometrical aspects of nanotubes, such as location and orientation, and the atomic structure of nanotubes, including helicity and diameter. There is currently no effective and simple purification procedure that fulfills all requirements for processing carbon nanotubes. Purification is still the bottleneck for technical applications, especially where large amounts of material are required. Although the alkali-metal-doped carbon nanotubes showed high H-2 Weight uptake, further investigations indicated that some of this uptake was due to water rather than hydrogen. This discovery indicates a potential source of error in evaluation of the storage capacity of doped carbon nanotubes. Nevertheless, currently available single-wall nanotubes yield a hydrogen uptake value near 4 wt% under moderate pressure and room temperature. A further 50% increase is needed to meet U.S. Department of Energy targets for commercial exploitation. Meeting this target will require combining experimental and theoretical efforts to achieve a full understanding of the adsorption process, so that the uptake can be rationally optimized to commercially attractive levels. Large-scale production and purification of carbon nanotubes and remarkable improvement of H-2 storage capacity in carbon nanotubes represent significant technological and theoretical challenges in the years to come.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The pore-opening size of MCM-41 is tailored to be in the microporous region using a chemical vapor deposition technique for selective tailoring. Although the pore opening is narrowed, the internal pore body of MCM-41 remains unchanged so the pore volume retains a substantial portion (80%) of its original value. The adsorption equilibrium of nitrogen and benzene in the modified MCM-41 shows a type I isotherm, which significantly improves the adsorption performance of MCM-41 for low-concentration volatile organic compounds. The adsorption kinetics of benzene in the modified MCM-41 is also studied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report a field-effect phototransistor with a channel comprising a thin nanocrystalline silicon transport layer and a thicker hydrogenated amorphous silicon absorption layer. The semiconductor and dielectric layers were deposited by radio-frequency plasma enhanced chemical vapor deposition. The phototransistor with channel length of 24 microns and photosensitive area of 1.4 mm(2) shows an off-current of about 1 pA, and high photoconductive gain in the subthreshold region. Measurements of the quantum efficiency at different incident light intensities and biasing conditions, along with spectral-response characteristics, and threshold voltage stability characterization demonstrate the feasibility of the phototransistor for low light level detection.