1000 resultados para ceramic laser
Resumo:
Tribochemical silica-coating is the recommended conditioning method for improving glass-infiltrated alumina composite adhesion to resin cement. High-intensity lasers have been considered as an alternative for this purpose. This study evaluated the morphological effects of Er,Cr:YSGG laser irradiation on aluminous ceramic, and verified the microtensile bond strength of composite resin to ceramic following silica coating or laser irradiation. In-Ceram Alumina ceramic blocks were polished, submitted to airborne particle abrasion (110 mu m Al(2)O(3)), and conditioned with: (CG) tribochemical silica coating (110 mu m SiO(2)) + silanization (control group); (L1-L10) Er,Cr:YSGG laser (2.78 mu m, 20 Hz, 0.5 to 5.0 W) + silanization. Composite resin blocks were cemented to the ceramic blocks with resin cement. These sets were stored in 37A degrees C distilled water (24 h), embedded in acrylic resin, and sectioned to produce bar specimens that were submitted to microtensile testing. Bond strength values (MPa) were statistically analyzed (alpha a parts per thousand currency sign0.05), and failure modes were determined. Additional ceramic blocks were conditioned for qualitative analysis of the topography under SEM. There were no significant differences among silicatization and laser treatments (p > 0.05). Microtensile bond strength ranged from 19.2 to 27.9 MPa, and coefficients of variation ranged from 30 to 55%. Mixed failure of adhesive interface was predominant in all groups (75-96%). No chromatic alteration, cracks or melting were observed after laser irradiation with all parameters tested. Surface conditioning of glass-infiltrated alumina composite with Er,Cr:YSGG laser should be considered an innovative alternative for promoting adhesion of ceramics to resin cement, since it resulted in similar bond strength values compared to the tribochemical treatment.
Resumo:
The aim of this study was to evaluate the shear bond strength of repairs in porcelain conditioned with laser. Sixty porcelain discs were made and six groups were formed (n = 10): G1: conditioning with laser with potency 760 mW; G2: conditioning with laser with potency 760 mW and application of 37% phosphoric acid for 15 s; G3: conditioning with laser with potency 900 mW; G4: conditioning with laser with potency 900 mW and application of 37% phosphoric acid for 15 s; G5: application of 37% phosphoric acid for 15 s (group control) and G6: application of 10% hydrofluoric acid for 2 min. The composite resin was insert of incremental layers at the porcelain surface aided with a metal matrix, and photoactivation for 20 s each increment. The specimens were submitted to a thermal cycling by 1000 cycles of 30 s in each bath with temperature between 5 and 55 degrees C. After the thermal cycling, specimens were submitted to the shear bond strength. The results were evaluated statistically through analysis of variance and Tukey's tests with 5% significance. The averages and standard deviation founded were: G1, 11.25 (+/- 3.10); G2, 12.32 (+/- 2.65); G3, 14.02 (+/- 2.38); G4, 13.44 (+/- 2,07); G5, 9.91 (-/+ 2,18); G6, 12.74 (+/- 2.67). The results showed that the femtosecond laser produced a shear bond strength of repairs in porcelain equal to the hydrofluoric acid and significantly superior to the use of phosphoric acid. Microsc. Res. Tech., 2012. (C) 2012 Wiley Periodicals, Inc.
Resumo:
OBJECTIVE To compare the precision of fit of full-arch implant-supported screw-retained computer-aided designed and computer-aided manufactured (CAD/CAM) titanium-fixed dental prostheses (FDP) before and after veneering. The null-hypothesis was that there is no difference in vertical microgap values between pure titanium frameworks and FDPs after porcelain firing. MATERIALS AND METHODS Five CAD/CAM titanium grade IV frameworks for a screw-retained 10-unit implant-supported reconstruction on six implants (FDI tooth positions 15, 13, 11, 21, 23, 25) were fabricated after digitizing the implant platforms and the cuspid-supporting framework resin pattern with a laser scanner (CARES(®) Scan CS2; Institut Straumann AG, Basel, Switzerland). A bonder, an opaquer, three layers of porcelain, and one layer of glaze were applied (Vita Titankeramik) and fired according to the manufacturer's preheating and fire cycle instructions at 400-800°C. The one-screw test (implant 25 screw-retained) was applied before and after veneering of the FDPs to assess the vertical microgap between implant and framework platform with a scanning electron microscope. The mean microgap was calculated from interproximal and buccal values. Statistical comparison was performed with non-parametric tests. RESULTS All vertical microgaps were clinically acceptable with values <90 μm. No statistically significant pairwise difference (P = 0.98) was observed between the relative effects of vertical microgap of unveneered (median 19 μm; 95% CI 13-35 μm) and veneered FDPs (20 μm; 13-31 μm), providing support for the null-hypothesis. Analysis within the groups showed significantly different values between the five implants of the FDPs before (P = 0.044) and after veneering (P = 0.020), while a monotonous trend of increasing values from implant 23 (closest position to screw-retained implant 25) to 15 (most distant implant) could not be observed (P = 0.169, P = 0.270). CONCLUSIONS Full-arch CAD/CAM titanium screw-retained frameworks have a high accuracy. Porcelain firing procedure had no impact on the precision of fit of the final FDPs. All implant microgap measurements of each FDP showed clinically acceptable vertical misfit values before and after veneering. Thus, the results do not only show accurate performance of the milling and firing but show also a reproducible scanning and designing process.
Resumo:
Eutectic rods of Al2O3–Er3Al5O12 were grown by directional solidification using the laser-heated floating zone method at rates in the range 25–1500 mm/h. Their microstructure and mechanical properties (hardness, toughness and strength) were investigated as a function of the growth rate. A homogeneous and interpenetrated microstructure was found in most cases, and interphase spacing decreased with growth rate following the Hunt–Jackson law. Hardness increased slightly as the interphase spacing decreased while toughness was low and independent of the microstructure. The rods presented very high bending strength as a result of the homogeneous microstructure, and their strength increased rapidly as the interphase spacing decreased, reaching a maximum of 2.7 GPa for the rods grown at 750 mm/h. The bending strength remained constant up to 1300 K and decreased above this temperature. The relationship between the microstructure and the mechanical properties was established from the analysis of the microstructure and of the fracture mechanisms
Resumo:
The coupling between solar light radiation and laser rod medium in a solar pumped laser affects the efficiency of the laser. To optimize the pumping system, simulation of the two-stage pumping system with a Fresnel lens and conic pumping cavity is carried out with Tracepro software. According to the power density distribution along the axis at focal place of the Fresnel lens, the diameter and position of the pumping cavity window and the distance of the window from the Fresnel lens are optimized. The power density distributions along the laser rod axis of different cavity lengths and different cavity tapers are also analyzed. The optimal structure of taper cavity is obtained. The mirror relecting cavity and ceramic cavity are introduced in detail.
Resumo:
Directionally solidified Al2O3–Er3Al5O12–ZrO2 eutectic rods were processed using the laser floating zone method at growth rates of 25, 350and 750 mm/h to obtain microstructures with different domain size. The mechanical properties were investigated as a function of the processing rate. The hardness, 15.6 GPa, and the fracture toughness, 4 MPa m1/2, obtained from Vickers indentation at room temperature were practically independent of the size of the eutectic phases. However, the flexural strength increased as the domain size decreased, reaching outstanding strength values close to 3 GPa in the samples grown at 750 mm/h. A high retention of the flexural strength was observed up to 1500 K in the materials processed at 25 and 350 mm/h, while superplastic behaviour was observed at 1700 K in the eutectic rods solidified at the highest rate of 750 mm/h