965 resultados para carbon paste electrodes
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A sensitive and fast-responding membrane-free amperometric gas sensor is described, consisting of a small filter paper foil soaked with a room temperature ionic liquid (RTIL), upon which three electrodes are screen printed with carbon ink, using a suitable mask. It takes advantage of the high electrical conductivity and negligible vapour pressure of RTILs as well as their easy immobilization into a porous and inexpensive supporting material such as paper. Moreover, thanks to a careful control of the preparation procedure, a very close contact between the RTIL and electrode material can be achieved so as to allow gaseous analytes to undergo charge transfer just as soon as they reach the three-phase sites where the electrode material, paper supported RTIL and gas phase meet. Thus, the adverse effect on recorded currents of slow steps such as analyte diffusion and dissolution in a solvent is avoided. To evaluate the performance of this device, it was used as a wall-jet amperometric detector for flow injection analysis of 1-butanethiol vapours, adopted as the model gaseous analyte, present in headspace samples in equilibrium with aqueous solutions at controlled concentrations. With this purpose, the RTIL soaked paper electrochemical detector (RTIL-PED) was assembled by using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide as the wicking RTIL and printing the working electrode with carbon ink doped with cobalt(II) phthalocyanine, to profit from its ability to electrocatalyze thiol oxidation. The results obtained were quite satisfactory (detection limit: 0.5 mu M; dynamic range: 2-200 mu M, both referring to solution concentrations; correlation coefficient: 0.998; repeatability: +/- 7% RSD; long-term stability: 9%), thus suggesting the possible use of this device for manifold applications.
Resumo:
2-Aminothiazole covalently attached to a silica gel surface was prepared in order to obtain an adsorbent for Hg(II) ions having the following characteristics: good sorption capacity, chemical stability under conditions of use, and, especially, high selectivity. The accumulation voltammetry of mercury(II) was investigated at a carbon paste electrode chemically modified with silica gel functionalized with 2-aminothiazole (SIAMT-CPE). The repetitive cyclic voltammogram of mercury(II) solution in the potential range -0.2 to + 0.6 V versus Ag/AgCl (0.02 mol L-1 KNO3; V = 20 mV s(-1)) show two peaks one at about 0.1 V and other at 0.205 V. The anodic wave peak at 0.205 V is well defined and does not change during the cycles and it was therefore further investigated for analytical purposes using differential pulse anodic stripping voltammetry in differents supporting electrolytes. The mercury response was evaluated with respect to pH, electrode composition, preconcentration time, mercury concentration, cleaning solution, possible interferences and other variables. The precision for six determinations (n = 6) of 0.02 and 0.20 mg L-1 Hg(II) was 4.1 and 3.5% (relative standard deviation), respectively. The detection limit was estimated as 0.10 mu g L-1 mercury(II) by means of 3:1 current-to-noise ratio in connection with the optimization of the various parameters involved and using the highest-possible analyser sensitivity. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A new composite electrode based on multiwall carbon nanotubes (MWCNT) and silicone-rubber (SR) was developed and applied to the determination of propranolol in pharmaceutical formulations. The effect of using MWCNT/graphite mixtures in different proportions was also investigated. Cyclic voltammetry and electrochemical impedance spectroscopy were used for electrochemical characterization of different electrode compositions. Propranolol was determined using MWCNT/SR 70% (m/m) electrodes with linear dynamic ranges up to 7.0 mu molL(-1) by differential pulse and up to 5.4 mu molL(-1) by square wave voltammetry, with LODs of 0.12 and 0.078 mu molL(-1), respectively. Analysis of commercial samples agreed with that obtained by the official spectrophotometric method. The electrode is mechanically robust and presented reproducible results and a long useful life.
Resumo:
Stimulating neural electrodes are required to deliver charge to an environment that presents itself as hostile. The electrodes need to maintain their electrical characteristics (charge and impedance) in vivo for a proper functioning of neural prostheses. Here we design implantable multi-walled carbon nanotubes coating for stainless steel substrate electrodes, targeted at wide frequency stimulation of deep brain structures. In well-controlled, low-frequency stimulation acute experiments, we show that multi-walled carbon nanotube electrodes maintain their charge storage capacity (CSC) and impedance in vivo. The difference in average CSCs (n = 4) between the in vivo (1.111 mC cm(-2)) and in vitro (1.008 mC cm(-2)) model was statistically insignificant (p > 0.05 or P-value = 0.715, two tailed). We also report on the transcription levels of the pro-inflammatory cytokine IL-1 beta and TLR2 receptor as an immediate response to low-frequency stimulation using RT-PCR. We show here that the IL-1 beta is part of the inflammatory response to low-frequency stimulation, but TLR2 is not significantly increased in stimulated tissue when compared to controls. The early stages of neuroinflammation due to mechanical and electrical trauma induced by implants can be better understood by detection of pro-inflammatory molecules rather than by histological studies. Tracking of such quantitative response profits from better analysis methods over several temporal and spatial scales. Our results concerning the evaluation of such inflammatory molecules revealed that transcripts for the cytokine IL-1 beta are upregulated in response to low-frequency stimulation, whereas no modulation was observed for TLR2. This result indicates that the early response of the brain to mechanical trauma and low-frequency stimulation activates the IL-1 beta signaling cascade but not that of TLR2.
Resumo:
A new environmentally friendly Au nanoparticles (Au NPs) synthesis in glycerol by using ultraviolet irradiation and without extra-added stabilizers is described. The synthesis proposed in this work may impact on the non-polluting production of noble nanoparticles with simple chemicals normally found in standard laboratories. These Au NPs were used to modify a carbon paste electrode (CPE) without having to separate them from the reaction medium. This green electrode was used as an electrochemical sensor for the nitrite detection in water. At the optimum conditions the green sensor presented a linear response in the 2.0×10−7–1.5×10−5 M concentration range, a good detection sensitivity (0.268 A L mol−1), and a low detection limit of 2.0×10−7 M of nitrite. The proposed modified green CPE was used to determine nitrite in tap water samples.
Resumo:
Electrochemical double-layer supercapacitors have an intermediate position between rechargeable batteries, which can store high amounts of energy, and dielectric capacitors, which have high output power. Supercapacitors are widely suggested to be used in automobiles (recuperation during braking, facilitate engine starting, electric stabilization of the system), industry (forklifts, elevators), hybrid off-road machinery and also in consumer electronics. Supercapacitor electrodes require highly porous material. Typically, activated carbon is used. Specific surface area of activated carbon is approximately 1000 m2 per gram. Carbon nanotubes represent one of prospective materials. According to numerous studies this material allows to improve the properties of supercapacitors. The task of this Master‘s Thesis was to test multiwalled carbon nanotubes and become confident with the testing methods.
Resumo:
This paper explores a new source of graphite for working electrodes, which presents advantages such as low electrical resistance, good flexibility, favorable mechanical performance, versatility to design electrodes in almost any size and very low cost. The new electrodes were investigated in batch electrochemical cells as associated with flow injection analysis systems. Cyclic voltammetry, stripping voltammetry, and amperometry associated with flow injection analysis techniques were applied for the determination of ascorbic acid, zinc and paracetamol in pharmaceutical formulations, respectively. Well-established analytical methods were applied for comparison purposes. The results herein demonstrate the potential of graphite foils as working electrodes in different electroanalytical methods, offering the possibility of producing disposable sensors for routine applications.
Resumo:
The present paper describes the utilization of nickel hydroxide modified electrodes toward the catalytic oxidation of carbohydrates (glucose, fructose, lactose and sucrose) and their utilization as electrochemical sensor. The modified electrodes were employed as a detector in flow injection analysis for individual carbohydrate detection, and to an ionic column chromatography system for multi-analyte samples aiming a prior separation step. Kinetic studies were performed on a rotating disk electrode (RDE) in order to determine both the heterogeneous rate constant and number of electrons transferred for each carbohydrate. Many advantages were found for the proposed system including fast and easy handling of the electrode modification, low cost procedure, a wide range of linearity (0.5-50 ppm), low detection limits (ppb level) and high sensitivities. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Flow injection analysis (FIA) using a carbon film sensor for amperometric detection was explored for ambroxol analysis in pharmaceutical formulations. The specially designed flow cell designed in the lab generated sharp and reproducible current peaks, with a wide linear dynamic range from 5 x 10(-7) to 3.5 x 10(-4) mol L-1, in 0.1 mol L-1 sulfuric acid electrolyte, as well as high sensitivity, 0.110 A mol(-1) L cm(-2) at the optimized flow rate. A detection limit of 7.6 x 10(-8) mol L-1 and a sampling frequency of 50 determinations per hour were achieved, employing injected volumes of 100 mu L and a flow rate of 2.0 mL min(-1). The repeatability, expressed as R.S.D. for successive and alternated injections of 6.0 x 10(-6) and 6.0 x 10(-5) mol L-1 ambroxol solutions, was 3.0 and 1.5%, respectively, without any noticeable memory effect between injections. The proposed method was applied to the analysis of ambroxol in pharmaceutical samples and the results obtained were compared with UV spectrophotometric and acid-base titrimetric methods. Good agreement between the results utilizing the three methods and the labeled values was achieved, corroborating the good performance of the proposed electrochemical methodology for ambroxol analysis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Flow injection analysis (FIA) with amperometric detection was employed for the quantification of N-acetylcysteine (NAC) in pharmaceutical formulations, utilizing an ordinary pyrolytic graphite (OPG) electrode modified with cobalt phthalocyanine (CoPc). Cyclic voltammetry was used in preliminary studies to establish the best conditions for NAC analysis. In FIA-amperometric experiments the OPG-CoPc electrode exhibited sharp and reproducible current peaks over a wide linear working range (5.0 x 10(-5)-1.0 x 10(-3) mol L(-1)) in 0.1 mol L(-1) NaOH solution. High sensitivity (130 mA mol(-1) cm(2)) and a low detection limit (9.0 x 10(-7) mol L(-1)) were achieved using the sensor. The repeatability (R.S.D.%) for 13 successive flow injections of a solution containing 5.0 x 10(-4) mol L(-1) NAC was 1.1%. The new procedure was applied in analyses of commercial pharmaceutical products and the results were in excellent agreement with those obtained using the official titrimetric method. The proposed amperometric method is highly suitable for quality control analyses of NAC in pharmaceuticals since it is rapid, precise and requires much less work than the recommended titrimetric method. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Substantial improvements in the selectivity of electrochemical measurements of trace nucleic adds are obtained by using membrane-covered carbon disk electrodes. Access to the electrode surface can be manipulated via a judicious choice of the membrane molecular weight cutoff (MWCO). The resulting separation step, performed in situ at the electrode surface, adds a new dimension of selectivity based on molecular size to electroanalysis of nucleic acids, Transport properties are evaluated with respect to the oligonucleotide length and membrane MWCO. A highly selective response is observed for synthetic oligonucleotides in the presence of otherwise interfering chromosomal DNAs. Discrimination among oligonucleotides of different lengths is also possible, Short accumulation periods (1-5 min) are sufficient for convenient measurements of low milligram per liter concentrations.
Resumo:
We have developed an eletroanalytical method that employs Cu2+ solutions to determine arsenic in sugarcane brandy using an electrode consisting of carbon paste modified with carbon nanotubes (CNTPE) and polymeric resins. We used linear sweep (LSV) and differential-pulse (DPV) voltammetry with cathodic stripping for CNTPE containing mineral oil or silicone as binder. The analytical curves were linear from 30 to 110 μg L−1 and from 10 to 110 μg L−1 for LSV and DPV, respectively. The limits of detection (L.O.D.) and quantification (L.O.Q.) of CNTPE were 10.3 and 34.5 μg L−1 for mineral oil and 3.4 and 11.2 μg L−1 for silicone. We applied this method to determine arsenic in five commercial sugarcane brandy samples. The results agreed well with those obtained by hydride generation combined with atomic absorption spectrometry (HG AAS).