831 resultados para buying decision process


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Generative music algorithms frequently operate by making musical decisions in a sequence, with each step of the sequence incorporating the local musical context in the decision process. The context is generally a short window of past musical actions. What is not generally included in the context is future actions. For real-time systems this is because the future is unknown. Offline systems also frequently utilise causal algorithms either for reasons of efficiency [1] or to simulate perceptual constraints [2]. However, even real-time agents can incorporate knowledge of their own future actions by utilising some form of planning. We argue that for rhythmic generation the incorporation of a limited form of planning - anticipatory timing - offers a worthwhile trade-off between musical salience and efficiency. We give an example of a real-time generative agent - the Jambot - that utilises anticipatory timing for rhythmic generation. We describe its operation, and compare its output with and without anticipatory timing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Artificial neural network (ANN) learning methods provide a robust and non-linear approach to approximating the target function for many classification, regression and clustering problems. ANNs have demonstrated good predictive performance in a wide variety of practical problems. However, there are strong arguments as to why ANNs are not sufficient for the general representation of knowledge. The arguments are the poor comprehensibility of the learned ANN, and the inability to represent explanation structures. The overall objective of this thesis is to address these issues by: (1) explanation of the decision process in ANNs in the form of symbolic rules (predicate rules with variables); and (2) provision of explanatory capability by mapping the general conceptual knowledge that is learned by the neural networks into a knowledge base to be used in a rule-based reasoning system. A multi-stage methodology GYAN is developed and evaluated for the task of extracting knowledge from the trained ANNs. The extracted knowledge is represented in the form of restricted first-order logic rules, and subsequently allows user interaction by interfacing with a knowledge based reasoner. The performance of GYAN is demonstrated using a number of real world and artificial data sets. The empirical results demonstrate that: (1) an equivalent symbolic interpretation is derived describing the overall behaviour of the ANN with high accuracy and fidelity, and (2) a concise explanation is given (in terms of rules, facts and predicates activated in a reasoning episode) as to why a particular instance is being classified into a certain category.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traditionally, consumers who have been dissatisfied with service have typically complained to the frontline personnel or to a manager in either a direct (face-to-face, over the phone) manner, indirect by writing, or done nothing but told friends and family of the incident. More recently, the Internet has provided various “new” ways to air a grievance, especially when little might have been done at the point of service failure. With the opportunity to now spread word-of-mouth globally, consumers have the potential to impact the standing of a brand or a firm's reputation. The hotel industry is particularly vulnerable, as an increasing number of bookings are undertaken via the Internet and the decision process is likely to be influenced by what other previous guests might post on many booking-linked sites. We conducted a qualitative study of a key travel site to ascertain the forms and motives of complaints made online about hotels and resorts. 200 web-based consumer complaints were analyzed using NVivo 8 software. Findings revealed that consumers report a wide range of service failures on the Internet. They tell a highly descriptive, persuasive, and credible story, often motivated by altruism or, at the other end of the continuum, by revenge. These stories have the power to influence potential guests to book or not book accommodation at the affected properties. Implications for managers of hotels and resorts are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present an algorithm called Optimistic Linear Programming (OLP) for learning to optimize average reward in an irreducible but otherwise unknown Markov decision process (MDP). OLP uses its experience so far to estimate the MDP. It chooses actions by optimistically maximizing estimated future rewards over a set of next-state transition probabilities that are close to the estimates, a computation that corresponds to solving linear programs. We show that the total expected reward obtained by OLP up to time T is within C(P) log T of the reward obtained by the optimal policy, where C(P) is an explicit, MDP-dependent constant. OLP is closely related to an algorithm proposed by Burnetas and Katehakis with four key differences: OLP is simpler, it does not require knowledge of the supports of transition probabilities, the proof of the regret bound is simpler, but our regret bound is a constant factor larger than the regret of their algorithm. OLP is also similar in flavor to an algorithm recently proposed by Auer and Ortner. But OLP is simpler and its regret bound has a better dependence on the size of the MDP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We provide an algorithm that achieves the optimal regret rate in an unknown weakly communicating Markov Decision Process (MDP). The algorithm proceeds in episodes where, in each episode, it picks a policy using regularization based on the span of the optimal bias vector. For an MDP with S states and A actions whose optimal bias vector has span bounded by H, we show a regret bound of ~ O(HS p AT ). We also relate the span to various diameter-like quantities associated with the MDP, demonstrating how our results improve on previous regret bounds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper is concerned with the unsupervised learning of object representations by fusing visual and motor information. The problem is posed for a mobile robot that develops its representations as it incrementally gathers data. The scenario is problematic as the robot only has limited information at each time step with which it must generate and update its representations. Object representations are refined as multiple instances of sensory data are presented; however, it is uncertain whether two data instances are synonymous with the same object. This process can easily diverge from stability. The premise of the presented work is that a robot's motor information instigates successful generation of visual representations. An understanding of self-motion enables a prediction to be made before performing an action, resulting in a stronger belief of data association. The system is implemented as a data-driven partially observable semi-Markov decision process. Object representations are formed as the process's hidden states and are coordinated with motor commands through state transitions. Experiments show the prediction process is essential in enabling the unsupervised learning method to converge to a solution - improving precision and recall over using sensory data alone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The IEEE Wireless LAN standard has been a true success story by enabling convenient, efficient and low-cost access to broadband networks for both private and professional use. However, the increasing density and uncoordinated operation of wireless access points, combined with constantly growing traffic demands have started hurting the users' quality of experience. On the other hand, the emerging ubiquity of wireless access has placed it at the center of attention for network attacks, which not only raises users' concerns on security but also indirectly affects connection quality due to proactive measures against security attacks. In this work, we introduce an integrated solution to congestion avoidance and attack mitigation problems through cooperation among wireless access points. The proposed solution implements a Partially Observable Markov Decision Process (POMDP) as an intelligent distributed control system. By successfully differentiating resource hampering attacks from overload cases, the control system takes an appropriate action in each detected anomaly case without disturbing the quality of service for end users. The proposed solution is fully implemented on a small-scale testbed, on which we present our observations and demonstrate the effectiveness of the system to detect and alleviate both attack and congestion situations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most existing research on maintenance optimisation for multi-component systems only considers the lifetime distribution of the components. When the condition-based maintenance (CBM) strategy is adopted for multi-component systems, the strategy structure becomes complex due to the large number of component states and their combinations. Consequently, some predetermined maintenance strategy structures are often assumed before the maintenance optimisation of a multi-component system in a CBM context. Developing these predetermined strategy structure needs expert experience and the optimality of these strategies is often not proofed. This paper proposed a maintenance optimisation method that does not require any predetermined strategy structure for a two-component series system. The proposed method is developed based on the semi-Markov decision process (SMDP). A simulation study shows that the proposed method can identify the optimal maintenance strategy adaptively for different maintenance costs and parameters of degradation processes. The optimal maintenance strategy structure is also investigated in the simulation study, which provides reference for further research in maintenance optimisation of multi-component systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two approaches are described, which aid the selection of the most appropriate procurement arrangements for a building project. The first is a multi-attribute technique based on the National Economic Development Office procurement path decision chart. A small study is described in which the utility factors involved were weighted by averaging the scores of five 'experts' for three hypothetical building projects. A concordance analysis is used to provide some evidence of any abnormal data sources. When applied to the study data, one of the experts was seen to be atypical. The second approach is by means of discriminant analysis. This was found to provide reasonably consistent predictions through three discriminant functions. The analysis also showed the quality criteria to have no significant impact on the decision process. Both approaches provided identical and intuitively correct answers in the study described. Some concluding remarks are made on the potential of discriminant analysis for future research and development in procurement selection techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper demonstrates that project management is a developing field of academic study in management, of considerable diversity and richness, which can make a valuable contribution to the development of management knowledge, as well as being of considerable economic importance. The paper reviews the substantial progress and trends of research in the subject, which has been grouped into nine major schools of thought: optimization, modelling, governance, behaviour, success, decision, process, contingency, and marketing. The paper addresses interactions between the different schools and with other related management fields, and provides insights into current and potential research in each and across these schools.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Robots currently recognise and use objects through algorithms that are hand-coded or specifically trained. Such robots can operate in known, structured environments but cannot learn to recognise or use novel objects as they appear. This thesis demonstrates that a robot can develop meaningful object representations by learning the fundamental relationship between action and change in sensory state; the robot learns sensorimotor coordination. Methods based on Markov Decision Processes are experimentally validated on a mobile robot capable of gripping objects, and it is found that object recognition and manipulation can be learnt as an emergent property of sensorimotor coordination.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Motion planning for planetary rovers must consider control uncertainty in order to maintain the safety of the platform during navigation. Modelling such control uncertainty is difficult due to the complex interaction between the platform and its environment. In this paper, we propose a motion planning approach whereby the outcome of control actions is learned from experience and represented statistically using a Gaussian process regression model. This mobility prediction model is trained using sample executions of motion primitives on representative terrain, and predicts the future outcome of control actions on similar terrain. Using Gaussian process regression allows us to exploit its inherent measure of prediction uncertainty in planning. We integrate mobility prediction into a Markov decision process framework and use dynamic programming to construct a control policy for navigation to a goal region in a terrain map built using an on-board depth sensor. We consider both rigid terrain, consisting of uneven ground, small rocks, and non-traversable rocks, and also deformable terrain. We introduce two methods for training the mobility prediction model from either proprioceptive or exteroceptive observations, and report results from nearly 300 experimental trials using a planetary rover platform in a Mars-analogue environment. Our results validate the approach and demonstrate the value of planning under uncertainty for safe and reliable navigation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite extensive literature on female mate choice, empirical evidence on women’s mating preferences in the search for a sperm donor is scarce, even though this search, by isolating a male’s genetic impact on offspring from other factors like paternal investment, offers a naturally ”controlled” research setting. In this paper, we work to fill this void by examining the rapidly growing online sperm donor market, which is raising new challenges by offering women novel ways to seek out donor sperm. We not only identify individual factors that influence women’s mating preferences but find strong support for the proposition that behavioural traits (inner values) are more important in these choices than physical appearance (exterior values). We also report evidence that physical factors matter more than resources or other external cues of material success, perhaps because the relevance of good character in donor selection is part of a female psychological adaptation throughout evolutionary history. The lack of evidence on a preference for material resources, on the other hand, may indicate the ability of peer socialization and better access to resources to rapidly shape the female decision process. Overall, the paper makes useful contributions to both the literature on human behaviour and that on decision-making in extreme and highly important situations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Travellers are spoilt by holiday choice, and yet will usually only seriously consider a few destinations during the decision process. With thousands of destination marketing organisations (DMOs) competing for attention, places are becoming increasingly substitutable. The study of destination competitiveness is an emerging field, and thesis contributes to an enhanced understanding by addressing three topics that have received relatively little attention in the tourism literature: destination positioning, the context of short break holidays, and domestic travel in New Zealand. A descriptive model of positioning as a source of competitive advantage is developed, and tested through 12 propositions. The destination of interest is Rotorua, which was arguably New Zealand’s first tourist destination. The market of interest is Auckland, which is Rotorua’s largest visitor market. Rotorua’s history is explored to identify factors that may have contributed to the destination’s current image in the Auckland market. A mix of qualitative and quantitative procedures is then utilised to determine Rotorua’s position, relative to a competing set of destinations. Based on an applied research problem, the thesis attempts to bridge the gap between academia and industry by providing useable results and benchmarks for five regional tourism organisations (RTOs). It is proposed that, in New Zealand, the domestic short break market represents a valuable opportunity not explicitly targeted by the competitive set of destinations. Conceptually, the thesis demonstrates the importance of analysing a destination’s competitive position, from the demand perspective, in a travel context; and then the value of comparing this ‘ideal’ position with that projected by the RTO. The thesis concludes Rotorua’s market position in the Auckland short break segment represents a source of comparative advantage, but is not congruent with the current promotional theme, which is being used in all markets. The findings also have implications for destinations beyond the context of the thesis. In particular, a new definition for ‘destination attractiveness’ is proposed, which warrants consideration in the design of future destination positioning analyses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Unlike US and Continental European jurisdictions, Australian monetary policy announcements are not followed promptly by projections materials or comprehensive summaries that explain the decision process. This information is disclosed 2 weeks later when the explanatory minutes of the Reserve Bank board meeting are released. This paper is the first study to exploit the features of the Australian monetary policy environment in order to examine the differential impact of monetary policy announcements and explanatory statements on the Australian interest rate futures market. We find that both monetary policy announcements and explanatory minutes releases have a significant impact on the implied yield and volatility of Australian interest rate futures contracts. When the differential impact of these announcements is examined using the full sample, no statistically significant difference is found. However, when the sample is partitioned based on stable periods and the Global Financial Crisis, a differential impact is evident. Further, contrary to the findings of Kim and Nguyen (2008), Lu et al. (2009), and Smales (2012a), the response along the yield curve, is found to be indifferent between the short and medium terms.