986 resultados para bulk optical
Resumo:
A model for refractive index of stratified dielectric substrate was put forward according to theories of inhomogeneous coatings. The substrate was divided into surface layer, subsurface layer and bulk layer along the normal direction of its surface. Both the surface layer (separated into N-1 sublayers of uniform thickness) and subsurface layer (separated into N-2 sublayers of uniform thickness), whose refractive indices have different statistical distributions, are equivalent to inhomogeneous coatings, respectively. And theoretical deduction was carried Out by employing characteristic matrix method of optical coatings. An example of mathematical calculation for optical properties of dielectric coatings had been presented. The computing results indicate that substrate subsurface defects can bring about additional bulk scattering and change propagation characteristic in thin film and Substrate. Therefore, reflectance, reflective phase shift and phase difference of an assembly of coatings and substrate deviate from ideal conditions. The model will provide some beneficial theory directions for improving optical properties of dielectric coatings via substrate surface modification. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
TiO2 films deposited by electron beam evaporation with glancing angle deposition (GLAD) technique were reported. The influence of flux angle on the surface morphology and the microstructure was investigated by scanning electron microscopy. The GLAD TiO2 films are anisotropy with highly orientated nanostructure of the slanted columns. With the increase of flux angle, refractive index and packing density decrease. This is caused by the shadowing effect dominating film growth. The anisotropic structure of TiO2 films results in optical birefringence, which reaches its maximum at the flux angle alpha = 65 degrees. The maximum birefringence of GLAD TiO2 films is higher than that of common bulk materials. It is suggested that glancing angle deposition may offer an effective method to obtain tailorable refractive index and birefringence in a large continuous range. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A series of silver films with different thickness were prepared under identical conditions by direct current magnetron sputtering. The optical properties of the silver films were measured using spectrophotometric techniques and the optical constants were calculated from reflection and transmission measurements made at near normal incidence. The results show that the optical properties and constants are affected by films' thickness. Below the critical thickness of 17 nm at which Ag film forms a continuous film, the optical properties and constants vary significantly as the thickness of films increases and then tends to a stable value which is reached at 41 nm. X-ray diffraction measurements were carried out to examine the structure and stress evolution of the Ag films as a function of films' thickness. It was found that the interplanar distance of (111) orientation decreases when the film thickness increases and tends to be close to that of bulk material. The compressive strains also decrease with increasing thickness. (C) 2007 Published by Elsevier B.V.
Resumo:
We have investigated a resonant refractive nonlinearity in a semiconductor waveguide by measuring intensity dependent phase shifts and bias-dependent recovery times. The measurements were performed on an optimized 750-μm-long AR coated buried heterostructure MQW p-i-n waveguide with a bandedge at 1.48 μm. Figure 1 shows the experimental arrangement. The mode-locked color center laser was tuned to 50 meV beyond the bandedge and 8 ps pulses with peak incident power up to 57 W were coupled into the waveguide. Some residual bandtail absorption remains at this wavelength and this is sufficient to cause carriers to be photogenerated and these give rise to a refractive nonlinearity, predominantly by plasma and bandfilling effects. A Fabry-Perot interferometer is used to measure the spectrum of the light which exits the waveguide. The nonlinearity within the guide causes self phase modulation (SPM) of the light and a study of the spectrum allows information to be recovered on the magnitude and recovery time of the nonlinear phase shift with a reasonable degree of accuracy. SPM spectra were recorded for a variety of pulse energies coupled into he unbiased waveguide. Figure 2 shows the resultant phase shift measured from the SPM spectra as a function of pulse energy. The relationship is a linear one, indicating that no saturation of the nonlinearity occurs for coupled pulse energies up to 230 pJ. A π phase shift, the minimum necessary for an all-optical switch, is obtained for a coupled pulse energy of 57 pJ while the maximum phase shift, 4 π, was measured for 230 pJ. The SPM spectra were highly asymmetric with pulse energy shifted to higher frequencies. Such spectra are characteristic of a slow, negative nonlinearity. This relatively slow speed is expected for the unbiased guide as the recovery time will be of the order of the recombination time of the photogenerated electrons, about 1 ns for InGaAsP material. In order to reduce the recovery time of the nonlinearity, it is necessary to remove the photogenerated carriers from the waveguide by a process other than recombination. One such technique is to apply a reverse bias to the waveguide in order to sweep the carriers out. Figure 3 shows the effect on the recovery time of the nonlinearity of applying reverse bias to the waveguide for 230 pJ coupled power. The recovery time was reduced from one much longer than the length of the pulse, estimated to be about 1 ns, at zero bias to 18 ± 3 ps for a bias voltage greater than -4 V. This compares with a value of 24 ps obtained in a bulk waveguide.
Resumo:
Based on shape memory effect of the sputtered thin film shape memory alloys, different types of micromirror structures were designed and fabricated for optical sensing application. Using surface micromachining, TiNi membrane mirror structure has been fabricated, which can be actuated based on intrinsic two-way shape memory effect of the free-standing TiNi film. Using bulk micromachining, TiNi/Si and TiNi/Si 3N 4microcantilever mirror structures were fabricated. © 2007 IOP Publishing Ltd.
Resumo:
Restricted deposits of fossil fuels and ecological problems created by their extensive use require a transition to renewable energy resources and clean fuel free from emissions of CO2. This fuel is likely to be liquid hydrogen. An important feature of liquid hydrogen is that it allows wide use of superconductivity. Superconductors provide compactness, high efficiency, savings in energy and a range of new applications not possible with other materials. The benefits of superconductivity justify use of low temperatures and facilitate development of fossil-free energy economy. The widespread use of superconductors requires a simple and reliable technique to monitor their properties. Magneto-optical imaging (MOI) is currently the only direct technique allowing visualization of the superconducting properties of materials. We report the application of this technique to key superconducting materials suitable for the hydrogen economy: MgB2 and high temperature superconductors (HTS) in bulk and thin-film form. The study shows that the MOI technique is well suited to the study of these materials. It demonstrates the advantage of HTS at liquid hydrogen temperatures and emphasizes the benefits of MgB2, in particular. © 2012 Springer Science+Business Media New York.
Resumo:
We use macroscopic holes drilled in a bulk YBCO superconductor to probe its magnetic properties in the volume of the sample. The sample is subjected to an AC magnetic flux with a density ranging from 30mT to 130mT and the flux in the superconductor is probed by miniature coils inserted in the holes. In a given hole, three different penetration regimes can be observed: (i) the shielded regime, where no magnetic flux threads the hole; (ii) the gradual penetration regime, where the waveform of the magnetic field has a clipped sine shape whose fundamental component scales with the applied field; and (iii) the flux concentration regime, where the waveform of the magnetic field is nearly a sine wave, with an amplitude exceeding that of the applied field by up to a factor of two. The distribution of the penetration regimes in the holes is compared with that of the magnetic flux density at the top and bottom surfaces of the sample, and is interpreted with the help of optical polarized light micrographs of these surfaces. We show that the measurement of the magnetic field inside the holes can be used as a local characterization of the bulk magnetic properties of the sample.
Resumo:
Hall effect, Raman scattering, photoluminescence spectroscopy (PL), optical absorption (OA), mass spectroscopy, and X-ray diffraction have been used to study bulk ZnO single crystal grown by a closed chemical vapor transport method. The results indicate that shallow donor impurities (Ga and Al) are the dominant native defects responsible for n-type conduction of the ZnO single crystal. PL and OA results suggest that the as-grown and annealed ZnO samples with poor lattice perfection exhibit strong deep level green photoluminescence and weak ultraviolet luminescence. The deep level defect in as-grown ZnO is identified to be oxygen vacancy. After high-temperature annealing, the deep level photoluminescence is suppressed in ZnO crystal with good lattice perfection. In contrast, the photoluminescence is nearly unchanged or even enhanced in ZnO crystal with grain boundary or mosaic structure. This result indicates that a trapping effect of the defect exists at the grain boundary in ZnO single crystal. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Undoped and Al-, Ga-, and In-doped Bi4Ti3O12 thin films were prepared on fused quartz substrates by chemical solution deposition. Their microstructures and optical properties were investigated by x-ray diffraction and UV-visible-NIR spectrophotometer, respectively. The optical band-gap energies, Urbach energies, and linear refractive indices of all the films are derived from the transmittance spectrum. Following the single oscillator model, the dispersion parameters such as the average oscillator energy (E-0) and dispersion energy (E-d) are achieved. The energy band gap and refractive indices are found to decrease with introducing the dopants of Al, Ga, and In, which is useful for the band-gap engineering and optical waveguide devices. The refractive index dispersion parameter (E-0/S-0) increases and the chemical bonding quantity (beta) decreases in all the films compared with those of bulk. It is supposed to be caused by the nanosize grains in films. (c) 2009 American Institute of Physics. [DOI 10.1063/1.3138813]
Resumo:
ZnS:Mn nanoparticles of the cubic zinc blende structure with the average sizes of about 3 nm were synthesized using a coprecipitation method and their optical and magnetic properties were investigated. Two emission bands were observed in doped nanoparitcles and attributed to the defect-related emission of ZnS and the Mn2+ emission, respectively. With the increase of Mn2+ concentration, the luminescence intensities of these two emission bands increased and the ZnS emission band shifted to lower energy. Based on the luminescence excitation spectra of Mn2+, the 3d(5) level structure of Mn2+ in ZnS nanoparticles is similar to that in bulk ZnS:Mn, regardless of Mn2+ concentration. Magnetic measurements showed that all the samples exhibit paramagnetic behavior and no antiferromagnetic interaction between Mn2+ ions exists, which are in contrast to bulk ZnS:Mn. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
GaNAs/GaAs single quantum wells (SQWs) and dilute GaNAs bulk grown by molecular beam epitaxy(MBE) were studied by photoluminescence (PL), selectively-excited PL, and time-resolved PL. Exciton localization and delocalization were investigated in detail. Under short pulse laser excitation, the delocalization exciton emission was revealed in GaNAs/GaAs SQWs. It exhibits quite different optical properties from N-related localized states. In dilute GaNAs bulk, a transition of alloy band related recombination was observed by measuring the PL dependence on temperature and excitation intensity and time-resolved PL, as well. This alloy-related transition presents intrinsic optical properties. These results are very important for realizing the abnomal features of III-V-N semiconductors.
Resumo:
Highly ordered AlN nanowire arrays were synthesized via a simple physical vapor deposition method on sapphire substrate. The nanowires have an extremely sharp tip < 10 nm, with the average length around 3 mu m. Raman spectroscopy analysis on the AlN nanowire arrays revealed that the lifetime of the phonons is shorter than that in bulk AlN. The transmission spectra of the AlN nanowires showed a blueshift similar to 0.27 eV at the absorption edge with that of the bulk AlN, which is closely related to the small size of the nanowires. (c) 2005 American Institute of Physics.
Resumo:
Bi4Ti3O12 (BTO) and Bi3.25In0.75Ti3O12 (BTO:In) thin films were prepared on fused quartz and LaNiO3/Si (LNO) substrates by chemical solution deposition (CSD). Their microstructures, ferroelectric and optical properties were investigated by X-ray diffraction, scanning electron microscope, ferroelectric tester and UV-visible-NIR spectrophotometer, respectively. The optical band-gaps of the films were found to be 3.64 and 3.45 eV for the BTO and BTO:In films, respectively. Optical constants (refractive indexes and extinction coefficients) were determined from the optical transmittance spectra using the envelope method. Following the single electronic oscillator model, the single oscillator energy E-0, the dispersion energy E-d, the average interband oscillator wavelength lambda(0), the average oscillator strength S-0, the refractive index dispersion parameter (E-0/S-0), the chemical bonding quantity beta, and the long wavelength refractive index n(infinity) were obtained and analyzed. Both the refractive index and extinction coefficient of the BTO:In films are smaller than those of the BTO films. Furthermore, the refractive index dispersion parameter (E-0/S-0) increases and the chemical bonding quantity beta decreases in the BTO and BTO:In films compared with those of bulk. (C) 2007 Published by Elsevier B.V.
Resumo:
Using micro-photoluminescence technique, we observed a new photoluminescence peak about 0.348 eV above the bandgap of GaAs (E-0). By analyzing its optical characteristics, we assigned this peak to the nonequilibrium luminescence emission from the E-0 + Delta(0) bandgap in semi-insulated GaAs, which was further verified by Raman results. The observed polarization, excitation power dependence and temperature dependence of the photoluminescence spectra from the E-0 + Delta(0) energy level were very similar to those from the E-0 of GaAs. This mainly resulted from the common conduction band around Gamma(6) that was involved in the two optical transition processes, and indicated that the optical properties of bulk GaAs were mainly determined by the intrinsic properties of the conduction band. Our results demonstrated that the micro-photoluminescence technique is a powerful tool to investigate the high energy states above the fundamental bandgap in semiconductor materials.
Resumo:
Broad-band semiconductor optical amplifiers (SOAs) with different thicknesses and thin bulk tensile-strained active layers were fabricated and studied. Amplified spontaneous emission (ASE) spectra and gain spectra of SOAs were measured and analyzed at different CW biases. A maximal 3 dB ASE bandwidth of 136 nm ranging from 1480 to 1616 nm, and a 3 dB optical amplifier gain bandwidth of about 90 nm ranging from 1510 to 1600 nm, were obtained for the very thin bulk active SOA. Other SOAs characteristics such as saturation output power and polarization sensitivity were measured and compared. (c) 2006 Elsevier B.V. All rights reserved.