955 resultados para bovine placenta
Resumo:
Introduction There is growing interest in the biomechanics of ‘fusionless’ implant constructs used for deformity correction in the thoracic spine. Intervertebral stapling is a leading method of fusionless corrective surgery. Although used for a number of years, there is limited evidence as to the effect these staples have on the stiffness of the functional spinal unit. Materials and Methods Thoracic spines from 6-8 week old calves were dissected and divided into motion segments including levels T4-T11 (n=14). Each segment was potted in polymethylemethacrylate. An Instron Biaxial materials testing machine with a custom made jig was used for testing. The segments were tested in flexion/extension, lateral bending and axial rotation at 37⁰C and 100% humidity, using moment control to a maximum 1.75 Nm with a loading rate of 0.3 Nm per second. This torque was found sufficient to achieve physiologically representative ranges of movement. The segments were initially tested uninstrumented with data collected from the tenth load cycle. Next a left anterolateral Shape Memory Alloy (SMA) staple was inserted (Medtronic Sofamor Danek, USA). Biomechanical testing was repeated as before with data collected from the tenth load cycle. Results In flexion/extension there was an insignificant drop in stiffness of 3% (p=0.478). In lateral bending there was a significant drop in stiffness of 21% (p<0.001). This was mainly in lateral bending away from the staple, where the stiffness reduced by 30% (p<0.001). This was in contrast to lateral bending towards the staple where it dropped by 12% which was still statistically significant (p=0.036). In axial rotation there was an overall near significant drop in stiffness of 11% (p=0.076). However, this was more towards the side of the staple measuring a decrease of 14% as opposed to 8% away from the staple. In both cases it was a statistically insignificant drop (p=0.134 and p=0.352 respectively). Conclusion Insertion of intervertebral SMA staples results in a significant reduction in motion segment stiffness in lateral bending especially in the direction away from the staple. The staple had less effect on axial rotation stiffness and minimal effect on flexion/extension stiffness.
Resumo:
Articular cartilage (AC), an avascular connective tissue lining articulating surfaces of the long bones, comprises extracellular biopolymers. In functionally compromised states such as osteoarthritis, thinned or lost AC causes reduced mobility and increased health-care costs. Understanding of the characteristics responsible for the load bearing efficiency of AC and the factors leading to its degradation are incomplete. DTI shows the structural alignment of collagen in AC [1] and T2 relaxation measurements suggest that the average director of reorientational motion of water molecules depends on the degree of alignment of collagen in AC [2]. Information on the nature of the chemical interactions involved in functional AC is lacking. The need for AC structural integrity makes solid state NMR an ideal tool to study this tissue. We examined the contribution of water in different functional ‘compartments’ using 1H-MAS, 13C-MAS and 13C-CPMAS NMR of bovine patellar cartilage incubated in D2O. 1H-MAS spectra signal intensity was reduced due to H/D exchange without a measureable redistribution of relative signal intensity. Chemical shift anisotropy was estimated by lineshape analysis of multiple peaks in the 1H-MAS spinning sidebands. These asymmetrical sidebands suggested the presence of multiple water species in AC. Therefore, water was added in small aliquots to D2O saturated AC and the influence of H2O and D2O on organic components was studied with 13C-MAS-NMR and 13C-CPMAS-NMR. Signal intensity in 13C-MAS spectra showed no change in relative signal intensity throughout the spectrum. In 13C-CPMAS spectra, displacement of water by D2O resulted in a loss of signal in the aliphatic region due to a reduction in proton availability for cross-polarization. These results complement dehydration studies of cartilage using osmotic manipulation [3] and demonstrate components of cartilage that are in contact with mobile water.
Resumo:
Articular cartilage (AC), an avascular connective tissue lining articulating surfaces of the long bones, comprises extracellular biopolymers. In functionally compromised states such as osteoarthritis, thinned or lost AC causes reduced mobility and increased health-care costs. Understanding of the characteristics responsible for the load bearing efficiency of AC and the factors leading to its degradation are incomplete. DTI shows the structural alignment of collagen in AC [1] and T2 relaxation measurements suggest that the average director of reorientational motion of water molecules depends on the degree of alignment of collagen in AC [2]. Information on the nature of the chemical interactions involved in functional AC is lacking. The need for AC structural integrity makes solid state NMR an ideal tool to study this tissue. We examined the contribution of water in different functional ‘compartments’ using 1H-MAS, 13C-MAS and 13C-CPMAS NMR of bovine patellar cartilage incubated in D2O. 1H-MAS spectra signal intensity was reduced due to H/D exchange without a measureable redistribution of relative signal intensity. Chemical shift anisotropy was estimated by lineshape analysis of multiple peaks in the 1H-MAS spinning sidebands. These asymmetrical sidebands suggested the presence of multiple water species in AC. Therefore, water was added in small aliquots to D2O saturated AC and the influence of H2O and D2O on organic components was studied with 13C-MAS-NMR and 13C-CPMAS-NMR. Signal intensity in 13C-MAS spectra showed no change in relative signal intensity throughout the spectrum. In 13C-CPMAS spectra, displacement of water by D2O resulted in a loss of signal in the aliphatic region due to a reduction in proton availability for cross-polarization. These results complement dehydration studies of cartilage using osmotic manipulation [3] and demonstrate components of cartilage that are in contact with mobile water.
Resumo:
Whereas DNA methylation is essential for genomic imprinting, the importance of histone methylation in the allelic expression of imprinted genes is unclear. Imprinting control regions (ICRs), however, are marked by histone H3-K9 methylation on their DNA-methylated allele. In the placenta, the paternal silencing along the Kcnq1 domain on distal chromosome 7 also correlates with the presence of H3-K9 methylation, but imprinted repression at these genes is maintained independently of DNA methylation. To explore which histone methyltransferase (HMT) could mediate the allelic H3-K9 methylation on distal chromosome 7, and at ICRs, we generated mouse conceptuses deficient for the SET domain protein G9a. We found that in the embryo and placenta, the differential DNA methylation at ICRs and imprinted genes is maintained in the absence of G9a. Accordingly, in embryos, imprinted gene expression was unchanged at the domains analyzed, in spite of a global loss of H3-K9 dimethylation (H3K9me2). In contrast, the placenta-specific imprinting of genes on distal chromosome 7 is impaired in the absence of G9a, and this correlates with reduced levels of H3K9me2 and H3K9me3. These findings provide the first evidence for the involvement of an HMT and suggest that histone methylation contributes to imprinted gene repression in the trophoblast.
Resumo:
There is growing interest in the biomechanics of ‘fusionless’ implant constructs used for deformity correction in the thoracic spine, however, there are questions over the comparability of in vitro biomechanical studies from different research groups due to the various methods used for specimen preparation, testing and data collection. The aim of this study was to identify the effect of two key factors on the stiffness of immature bovine thoracic spine motion segments: (i) repeated cyclic loading and (ii) multiple freeze-thaw cycles, to aid in the planning and interpretation of in vitro studies. Two groups of thoracic spine motion segments from 6-8 week old calves were tested in flexion/extension, right/left lateral bending, and right/left axial rotation under moment control. Group (A) were tested with continuous repeated cyclic loading for 500 cycles with data recorded at cycles 3, 5, 10, 25, 50, 100, 200, 300, 400 and 500. Group (B) were tested after each of five freeze-thaw sequences, with data collected from the 10th load cycle in each sequence. Group A: Flexion/extension stiffness reduced significantly over the 500 load cycles (-22%; P=0.001), but there was no significant change between the 5th and 200th load cycles. Lateral bending stiffness decreased significantly (-18%; P=0.009) over the 500 load cycles, but there was no significant change in axial rotation stiffness (P=0.137). Group B: There was no significant difference between mean stiffness over the five freeze-thaw sequences in flexion/extension (P=0.813) and a near significant reduction in mean stiffness in axial rotation (-6%; P=0.07). However, there was a statistically significant increase in stiffness in lateral bending (+30%; P=0.007). Comparison of in vitro testing results for immature thoracic bovine spine segments between studies can be performed with up to 200 load cycles without significant changes in stiffness. However, when testing protocols require greater than 200 cycles, or when repeated freeze-thaw cycles are involved, it is important to account for the effect of cumulative load and freeze-thaw cycles on spine segment stiffness.
Resumo:
Anisotropy of transverse proton spin relaxation in collagen-rich tissues like cartilage and tendon is a well-known phenomenon that manifests itself as the "magic-angle" effect in magnetic resonance images of these tissues. It is usually attributed to the non-zero averaging of intra-molecular dipolar interactions in water molecules bound to oriented collagen fibers. One way to manipulate the contributions of these interactions to spin relaxation is by partially replacing the water in the cartilage sample with deuterium oxide. It is known that dipolar interactions in deuterated solutions are weaker, resulting in a decrease in proton relaxation rates. In this work, we investigate the effects of deuteration on the longitudinal and the isotropic and anisotropic contributions to transverse relaxation of water protons in bovine articular cartilage. We demonstrate that the anisotropy of transverse proton spin relaxation in articular cartilage is independent of the degree of deuteration, bringing into question some of the assumptions currently held over the origins of relaxation anisotropy in oriented tissues.
Resumo:
INTRODUCTION. The intervertebral disc is the largest avascular structure in the human body, withstanding transient loads of up to nine times body weight during rigorous physical activity. The key structural elements of the disc are a gel-like nucleus pulposus surrounded by concentric lamellar rings containing criss-crossed collagen fibres. The disc also contains an elastic fiber network which has been suggested to play a structural role, but to date the relationship between the collagen and elastic fiber networks is unclear. CONCLUSION. The multimodal transmitted and reflected polarized light microscopy technique developed here allows clear differentiation between the collagen and elastic fiber networks of the intervertebral disc. The ability to image unstained specimens avoids concerns with uneven stain penetration or specificity of staining. In bovine tail discs, the elastic fiber network is intimately associated with the collagen network.
Resumo:
Background Despite its global recognition as a ruminant pathogen, cases of Chlamydia pecorum infection in Australian livestock are poorly documented. In this report, a C. pecorum specific Multi Locus Sequence Analysis scheme was used to characterise the C. pecorum strains implicated in two cases of sporadic bovine encephalomyelitis confirmed by necropsy, histopathology and immunohistochemistry. This report provides the first molecular evidence for the presence of mixed infections of C. pecorum strains in Australian cattle. Case presentation Affected animals were two markedly depressed, dehydrated and blind calves, 12 and 16 weeks old. The calves were euthanized and necropsied. In one calf, a severe fibrinous polyserositis was noted with excess joint fluid in all joints whereas in the other, no significant lesions were seen. No gross abnormalities were noted in the brain of either calf. Histopathological lesions seen in both calves included: multifocal, severe, subacute meningoencephalitis with vasculitis, fibrinocellular thrombosis and malacia; diffuse, mild, acute interstitial pneumonia; and diffuse, subacute epicarditis, severe in the calf with gross serositis. Immunohistochemical labelling of chlamydial antigen in brain, spleen and lung from the two affected calves and brain from two archived cases, localised the antigen to the cytoplasm of endothelium, mesothelium and macrophages. C. pecorum specific qPCR, showed dissemination of the pathogen to multiple organs. Phylogenetic comparisons with other C. pecorum bovine strains from Australia, Europe and the USA revealed the presence of two genetically distinct sequence types (ST). The predominant ST detected in the brain, heart, lung and liver of both calves was identical to the C. pecorum ST previously described in cases of SBE. A second ST detected in an ileal tissue sample from one of the calves, clustered with previously typed faecal bovine isolates. Conclusion This report provides the first data to suggest that identical C. pecorum STs may be associated with SBE in geographically separated countries and that these may be distinct from those found in the gastrointestinal tract. This report provides a platform for further investigations into SBE and for understanding the genetic relationships that exist between C. pecorum strains detected in association with other infectious diseases in livestock.
Resumo:
BACKGROUND AND OBJECTIVE: Idiopathic pulmonary fibrosis (IPF) is a degenerative disease characterized by fibrosis following failed epithelial repair. Mesenchymal stromal cells (MSC), a key component of the stem cell niche in bone marrow and possibly other organs including lung, have been shown to enhance epithelial repair and are effective in preclinical models of inflammation-induced pulmonary fibrosis, but may be profibrotic in some circumstances. METHODS: In this single centre, non-randomized, dose escalation phase 1b trial, patients with moderately severe IPF (diffusing capacity for carbon monoxide (DLCO ) ≥ 25% and forced vital capacity (FVC) ≥ 50%) received either 1 × 10(6) (n = 4) or 2 × 10(6) (n = 4) unrelated-donor, placenta-derived MSC/kg via a peripheral vein and were followed for 6 months with lung function (FVC and DLCO ), 6-min walk distance (6MWD) and computed tomography (CT) chest. RESULTS: Eight patients (4 female, aged 63.5 (57-75) years) with median (interquartile range) FVC 60 (52.5-74.5)% and DLCO 34.5 (29.5-40)% predicted were treated. Both dose schedules were well tolerated with only minor and transient acute adverse effects. MSC infusion was associated with a transient (1% (0-2%)) fall in SaO2 after 15 min, but no changes in haemodynamics. At 6 months FVC, DLCO , 6MWD and CT fibrosis score were unchanged compared with baseline. There was no evidence of worsening fibrosis. CONCLUSIONS: Intravenous MSC administration is feasible and has a good short-term safety profile in patients with moderately severe IPF.
Resumo:
Background/Aim. Mesenchymal stromal cells (MSCs) have been utilised in many clinical trials as an experimental treatment in numerous clinical settings. Bone marrow remains the traditional source tissue for MSCs but is relatively hard to access in large volumes. Alternatively, MSCs may be derived from other tissues including the placenta and adipose tissue. In an initial study no obvious differences in parameters such as cell surface phenotype, chemokine receptor display, mesodermal differentiation capacity or immunosuppressive ability, were detected when we compared human marrow derived- MSCs to human placenta-derived MSCs. The aim of this study was to establish and evaluate a protocol and related processes for preparation placenta-derived MSCs for early phase clinical trials. Methods. A full-term placenta was taken after delivery of the baby as a source of MSCs. Isolation, seeding, incubation, cryopreservation of human placentaderived MSCs and used production release criteria were in accordance with the complex regulatory requirements applicable to Code of Good Manufacturing Practice manufacturing of ex vivo expanded cells. Results. We established and evaluated instructions for MSCs preparation protocol and gave an overview of the three clinical areas application. In the first trial, MSCs were co-transplanted iv to patient receiving an allogeneic cord blood transplant as therapy for treatmentrefractory acute myeloid leukemia. In the second trial, MSCs were administered iv in the treatment of idiopathic pulmonary fibrosis and without serious adverse effects. In the third trial, MSCs were injected directly into the site of tendon damage using ultrasound guidance in the treatment of chronic refractory tendinopathy. Conclusion. Clinical trials using both allogeneic and autologous cells demonstrated MSCs to be safe. A described protocol for human placenta-derived MSCs is appropriate for use in a clinical setting, relatively inexpensive and can be relatively easily adjusted to a different set of regulatory requirements, as applicable to early phase clinical trials.
Resumo:
Addition of estradiol 17-beta to first trimester human placental minces resulted in an increased synthesis of a protein of apparent molecular weight 45 kDa. The specific involvement of estrogen in the stimulation of this protein was established by demonstrating a reduction in the level of this protein by the addition of CCS 16949 A, an inhibitor of aromatase, a key enzyme in the biosynthesis of estradiol 17-beta and ICI 182,780, an estrogen receptor antagonist. The protein was purified to homogeneity and N-terminal sequencing of two of the internal peptides obtained by enzymatic digestion of the protein, as well as the absence of a free N-terminal indicated that it could be actin. This was confirmed by Western blotting using commercially available actin antiserum. The role of estradiol 17-beta in the stimulation of actin synthesis in human placenta was also established by monitoring the quantitative inhibition of DNase I by actin.
Resumo:
The X-ray structure of recombinant bovine pancreatic phospholipase A(2) (PLA2), which specifically catalyzes the cleavage of the sn-2 acylester bond of phospholipids, has been refined at 1.5 Angstrom resolution. The crystal belongs to the space group P2(1)2(1)2(1) with unit-cell parameters a = 47.12, b = 64.59 and c = 38.14 Angstrom similar to the native enzyme reported previously by Dijkstra et nl. [J. Mel. Biol. (1981), 147, 97-123]. The refinement converged to an R value of 18.4% (R-free = 22.8%) for 16 374 reflections between 10.0 and 1.5 Angstrom resolution. The surface-loop residues (60-70) art: ordered in the present orthorhombic recombinant enzyme, but disordered in the trigonal recombinant enzyme. The active-site residues, His48, Asp99, and the catalytic water superimpose well with the trigonal form. Besides the catalytic water which is hydrogen bonded to His48, it is often seen that there is a second water attached to the same N atom of His48 and simultaneously hydrogen bonded to the O atom of Asp49. It is thought that the second water facilitates the tautomerism of His48 for enzyme catalysis, The catalytic water is also hydrogen bonded to the equatorial water coordinated to the calcium ion, In addition to the equatorial water, there is also an axial calcium water and the additional structural water. These five common water molecules are hydrogen bonded to the additional 16 water molecules in the present orthorhombic structure which may further enhance the structural integrity of the active site. Besides the protein and one calcium ion, a total of 134 water molecules were located in the present high-resolution refinement.