959 resultados para boreal lakes
Resumo:
Luonnosta haihtuvat orgaaniset yhdisteet, joita pääsee ilmaan etenkin metsistä, voivat vaikuttaa paikalliseen ja alueelliseen ilmanlaatuun, koska ne reagoivat ilmakehässä. Niiden reaktiotuotteet voivat myös osallistua uusien hiukkasten muodostumiseen ja kasvuun, millä voi olla vaikutusta ilmakehän säteilytaseeseen ja tätä kautta myös ilmastoon. Hiukkaset absorboivat ja sirottavat auringon säteilyä ja maapallon lämpösäteilyä minkä lisäksi ne vaikuttavat pilvien säteilyominaisuuksiin, määrään ja elinikään. Koko maapallon mittakaavassa luonnosta tulevat hiilivetypäästöt ylittävät ihmistoiminnan aiheuttamat päästöt moninkertaisesti. Tämän vuoksi luonnon päästöjen arviointi on tärkeää kun halutaan kehittää tehokkaita ilmanlaatu- ja ilmastostrategioita. Tämä tutkimus käsittelee boreaalisen metsän hiilivetypäästöjä. Boreaalinen metsä eli pohjoinen havumetsä on suurin maanpäällinen ekosysteemi, ja se ulottuu lähes yhtenäisenä nauhana koko pohjoisen pallonpuoliskon ympäri. Sille on tyypillistä puulajien suhteellisen pieni kirjo sekä olosuhteiden ja kasvun voimakkaat vuodenaikaisvaihtelut. Työssä on tutkittu Suomen yleisimmän boreaalisen puun eli männyn hiilivetypäästöjen vuodenaikaisvaihtelua sekä päästöjen riippuvuutta lämpötilasta ja valosta. Saatuja tuloksia on käytetty yhdessä muiden boreaalisilla puilla tehtyjen päästömittaustulosten kanssa Suomen metsiä varten kehitetyssä päästömallissa. Malli perustuu lisäksi maankäyttötietoihin, suomen metsille kehitettyyn luokitukseen ja meteorologisiin tietoihin, joiden avulla se laskee metsien hiilivetypäästöt kasvukauden aikana. Suomen metsien päästöt koostuvat koko kasvukauden ajan suurelta osin alfa- ja beta-pineenistä sekä delta-kareenista. Kesällä ja syksyllä päästöissä on myös paljon sabineenia, jota tulee etenkin lehtipuista. Päästöt seuraavat lämpötilan keskimääräistä vaihtelua, ovat suurimmillaan maan eteläosissa ja laskevat tasaisesti pohjoiseen siirryttäessä. Metsän isopreenipäästö on suhteellisen pieni – Suomessa tärkein isopreeniä päästävä puu on vähäpäästöinen kuusi, koska runsaspäästöisten pajun ja haavan osuus metsän lehtimassasta on hyvin pieni. Tässä työssä on myös laskettu ensimmäinen arvio metsän seskviterpeenipäästöistä. Seskviterpeenipäästöt alkavat Juhannuksen jälkeen ja ovat kasvukauden aikana samaa suuruusluokkaa kuin isopreenipäästöt. Vuositasolla Suomen metsien hiilivetypäästöt ovat noin kaksinkertaiset ihmistoiminnasta aiheutuviin päästöihin verrattuna.
Resumo:
To a large extent, lakes can be described with a one-dimensional approach, as their main features can be characterized by the vertical temperature profile of the water. The development of the profiles during the year follows the seasonal climate variations. Depending on conditions, lakes become stratified during the warm summer. After cooling, overturn occurs, water cools and an ice cover forms. Typically, water is inversely stratified under the ice, and another overturn occurs in spring after the ice has melted. Features of this circulation have been used in studies to distinguish between lakes in different areas, as basis for observation systems and even as climate indicators. Numerical models can be used to calculate temperature in the lake, on the basis of the meteorological input at the surface. The simple form is to solve the surface temperature. The depth of the lake affects heat transfer, together with other morphological features, the shape and size of the lake. Also the surrounding landscape affects the formation of the meteorological fields over the lake and the energy input. For small lakes the shading by the shores affects both over the lake and inside the water body bringing limitations for the one-dimensional approach. A two-layer model gives an approximation for the basic stratification in the lake. A turbulence model can simulate vertical temperature profile in a more detailed way. If the shape of the temperature profile is very abrupt, vertical transfer is hindered, having many important consequences for lake biology. One-dimensional modelling approach was successfully studied comparing a one-layer model, a two-layer model and a turbulence model. The turbulence model was applied to lakes with different sizes, shapes and locations. Lake models need data from the lakes for model adjustment. The use of the meteorological input data on different scales was analysed, ranging from momentary turbulent changes over the lake to the use of the synoptical data with three hour intervals. Data over about 100 past years were used on the mesoscale at the range of about 100 km and climate change scenarios for future changes. Increasing air temperature typically increases water temperature in epilimnion and decreases ice cover. Lake ice data were used for modelling different kinds of lakes. They were also analyzed statistically in global context. The results were also compared with results of a hydrological watershed model and data from very small lakes for seasonal development.
Resumo:
Man-induced climate change has raised the need to predict the future climate and its feedback to vegetation. These are studied with global climate models; to ensure the reliability of these predictions, it is important to have a biosphere description that is based upon the latest scientific knowledge. This work concentrates on the modelling of the CO2 exchange of the boreal coniferous forest, studying also the factors controlling its growing season and how these can be used in modelling. In addition, the modelling of CO2 gas exchange at several scales was studied. A canopy-level CO2 gas exchange model was developed based on the biochemical photosynthesis model. This model was first parameterized using CO2 exchange data obtained by eddy covariance (EC) measurements from a Scots pine forest at Sodankylä. The results were compared with a semi-empirical model that was also parameterized using EC measurements. Both of the models gave satisfactory results. The biochemical canopy-level model was further parameterized at three other coniferous forest sites located in Finland and Sweden. At all the sites, the two most important biochemical model parameters showed seasonal behaviour, i.e., their temperature responses changed according to the season. Modelling results were improved when these changeover dates were related to temperature indices. During summer-time the values of the biochemical model parameters were similar at all the four sites. Different control factors for CO2 gas exchange were studied at the four coniferous forests, including how well these factors can be used to predict the initiation and cessation of the CO2 uptake. Temperature indices, atmospheric CO2 concentration, surface albedo and chlorophyll fluorescence (CF) were all found to be useful and have predictive power. In addition, a detailed simulation study of leaf stomata in order to separate physical and biochemical processes was performed. The simulation study brought to light the relative contribution and importance of the physical transport processes. The results of this work can be used in improving CO2 gas exchange models in boreal coniferous forests. The meteorological and biological variables that represent the seasonal cycle were studied, and a method for incorporating this cycle into a biochemical canopy-level model was introduced.
Resumo:
This research has been prompted by an interest in the atmospheric processes of hydrogen. The sources and sinks of hydrogen are important to know, particularly if hydrogen becomes more common as a replacement for fossil fuel in combustion. Hydrogen deposition velocities (vd) were estimated by applying chamber measurements, a radon tracer method and a two-dimensional model. These three approaches were compared with each other to discover the factors affecting the soil uptake rate. A static-closed chamber technique was introduced to determine the hydrogen deposition velocity values in an urban park in Helsinki, and at a rural site at Loppi. A three-day chamber campaign to carry out soil uptake estimation was held at a remote site at Pallas in 2007 and 2008. The atmospheric mixing ratio of molecular hydrogen has also been measured by a continuous method in Helsinki in 2007 - 2008 and at Pallas from 2006 onwards. The mean vd values measured in the chamber experiments in Helsinki and Loppi were between 0.0 and 0.7 mm s-1. The ranges of the results with the radon tracer method and the two-dimensional model were 0.13 - 0.93 mm s-1 and 0.12 - 0.61 mm s-1, respectively, in Helsinki. The vd values in the three-day campaign at Pallas were 0.06 - 0.52 mm s-1 (chamber) and 0.18 - 0.52 mm s-1 (radon tracer method and two-dimensional model). At Kumpula, the radon tracer method and the chamber measurements produced higher vd values than the two-dimensional model. The results of all three methods were close to each other between November and April, except for the chamber results from January to March, while the soil was frozen. The hydrogen deposition velocity values of all three methods were compared with one-week cumulative rain sums. Precipitation increases the soil moisture, which decreases the soil uptake rate. The measurements made in snow seasons showed that a thick snow layer also hindered gas diffusion, lowering the vd values. The H2 vd values were compared to the snow depth. A decaying exponential fit was obtained as a result. During a prolonged drought in summer 2006, soil moisture values were lower than in other summer months between 2005 and 2008. Such conditions were prevailing in summer 2006 when high chamber vd values were measured. The mixing ratio of molecular hydrogen has a seasonal variation. The lowest atmospheric mixing ratios were found in the late autumn when high deposition velocity values were still being measured. The carbon monoxide (CO) mixing ratio was also measured. Hydrogen and carbon monoxide are highly correlated in an urban environment, due to the emissions originating from traffic. After correction for the soil deposition of H2, the slope was 0.49±0.07 ppb (H2) / ppb (CO). Using the corrected hydrogen-to-carbon-monoxide ratio, the total hydrogen load emitted by Helsinki traffic in 2007 was 261 t (H2) a-1. Hydrogen, methane and carbon monoxide are connected with each other through the atmospheric methane oxidation process, in which formaldehyde is produced as an important intermediate. The photochemical degradation of formaldehyde produces hydrogen and carbon monoxide as end products. Examination of back-trajectories revealed long-range transportation of carbon monoxide and methane. The trajectories can be grouped by applying cluster and source analysis methods. Thus natural and anthropogenic emission sources can be separated by analyzing trajectory clusters.
Resumo:
Yhteenveto: Järvien ainetasemallien kehittäminen.
Resumo:
Yhteenveto: Elohopea Suomen metsäjärvissä ja tekoaltaissa: ihmisen vaikutus kuormitukseen ja pitoisuuksiin kaloissa.
Resumo:
Yhteenveto: Järvien happamoituminen Suomessa: Alueellinen vedenlaatu ja kriittinen kuormitus
Resumo:
The aim of this thesis was to unravel the functional-structural characteristics of root systems of Betula pendula Roth., Picea abies (L.) Karst., and Pinus sylvestris L. in mixed boreal forest stands differing in their developmental stage and site fertility. The root systems of these species had similar structural regularities: horizontally-oriented shallow roots defined the horizontal area of influence, and within this area, each species placed fine roots in the uppermost soil layers, while sinker roots defined the maximum rooting depth. Large radial spread and high ramification of coarse roots, and the high specific root length (SRL) and root length density (RLD) of fine roots indicated the high belowground competitiveness and root plasticity of B. pendula. Smaller radial root spread and sparser branching of coarse roots, and low SRL and RLD of fine roots of the conifers could indicate their more conservative resource use and high association with and dependence on ectomycorrhiza-forming fungi. The vertical fine root distributions of the species were mostly overlapping, implying the possibility for intense belowground competition for nutrients. In each species, conduits tapered and their frequency increased from distal roots to the stem, from the stem to the branches, and to leaf petioles in B. pendula. Conduit tapering was organ-specific in each species violating the assumptions of the general vascular scaling model (WBE). This reflects the hierarchical organization of a tree and differences between organs in the relative importance of transport, safety, and mechanical demands. The applied root model was capable of depicting the mass, length and spread of coarse roots of B. pendula and P. abies, and to the lesser extent in P. sylvestris. The roots did not follow self-similar fractal branching, because the parameter values varied within the root systems. Model parameters indicate differences in rooting behavior, and therefore different ecophysiological adaptations between species.
Assessment of insect occurrence in boreal forests based on satellite imagery and field measurements.
Resumo:
The presence/absence data of twenty-seven forest insect taxa (e.g. Retinia resinella, Formica spp., Pissodes spp., several scolytids) and recorded environmental variation were used to investigate the applicability of modelling insect occurrence based on satellite imagery. The sampling was based on 1800 sample plots (25 m by 25 m) placed along the sides of 30 equilateral triangles (side 1 km) in a fragmented forest area (approximately 100 km2) in Evo, S Finland. The triangles were overlaid on land use maps interpreted from satellite images (Landsat TM 30 m multispectral scanner imagery 1991) and digitized geological maps. Insect occurrence was explained using either environmental variables measured in the field or those interpreted from the land use and geological maps. The fit of logistic regression models varied between species, possibly because some species may be associated with the characteristics of single trees while other species with stand characteristics. The occurrence of certain insect species at least, especially those associated with Scots pine, could be relatively accurately assessed indirectly on the basis of satellite imagery and geological maps. Models based on both remotely sensed and geological data better predicted the distribution of forest insects except in the case of Xylechinus pilosus, Dryocoetes sp. and Trypodendron lineatum, where the differences were relatively small in favour of the models based on field measurements. The number of species was related to habitat compartment size and distance from the habitat edge calculated from the land use maps, but logistic regressions suggested that other environmental variables in general masked the effect of these variables in species occurrence at the present scale.
Resumo:
The effect of scarification, ploughing and cross-directional plouhing on temperature conditions in the soil and adjacent air layer have been studied during 11 consecutive growth periods by using an unprepared clear-cut area as a control site. The maximum and minimum temperatures were measured daily in the summer months, and other temperature observations were made at four-hour intervals by means of a Grant measuring instrument. The development of the seedling stand was also followed in order to determine its shading effect on the soil surface. Soil preparation decreased the daily temperature amplitude of the air at the height of 10 cm. The maximum temperatures on sunny days were lower in the tilts of the ploughed and in the humps of the cross-directional ploughed sites compared with the unprepared area. Correspondingly, the night temperatures were higher and so the soil preparation considerably reduced the risk of night frost. In the soil at the depth of 5 cm, soil preparation increased daytime temperatures and reduced night temperatures compared with unprepared area. The maximum increase in monthly mean temperatures was almost 5 °C, and the daily variation in the surface parts of the tilts and humps increased so that excessively high temperatures for the optimal growth of the root system were measured from time to time. The temperature also rose at the depths of 50 and 100 cm. Soil preparation also increased the cumulative temperature sum. The highest sums accumulated during the summer months were recorded at the depth of 5 cm in the humps of cross-directional ploughed area (1127 dd.) and in the tilts of the ploughed area (1106 dd.), while the corresponding figure in the unprepared soil was 718 dd. At the height of 10 cm the highest temperature sum was 1020 dd. in the hump, the corresponding figure in the unprepared area being 925 dd. The incidence of high temperature amplitudes and percentage of high temperatures at the depth of 5 cm decreased most rapidly in the humps of cross-directional ploughed area and in the ploughing tilts towards the end of the measurement period. The decrease was attributed principally to the compressing of tilts, the ground vegetation succession and the growth of seedlings. The mean summer temperature in the unprepared area was lower than in the prepared area and the difference did not diminish during the period studied. The increase in temperature brought about by soil preparation thus lasts at least more than 10 years.
Resumo:
Two methods of pre-harvest inventory were designed and tested on three cutting sites containing a total of 197 500 m3 of wood. These sites were located on flat-ground boreal forests located in northwestern Quebec. Both methods studied involved scaling of trees harvested to clear the road path one year (or more) prior to harvest of adjacent cut-blocks. The first method (ROAD) considers the total road right-of-way volume divided by the total road area cleared. The resulting volume per hectare is then multiplied by the total cut-block area scheduled for harvest during the following year to obtain the total estimated cutting volume. The second method (STRATIFIED) also involves scaling of trees cleared from the road. However, in STRATIFIED, log scaling data are stratified by forest stand location. A volume per hectare is calculated for each stretch of road that crosses a single forest stand. This volume per hectare is then multiplied by the remaining area of the same forest stand scheduled for harvest one year later. The sum of all resulting estimated volumes per stand gives the total estimated cutting-volume for all cut-blocks adjacent to the studied road. A third method (MNR) was also used to estimate cut-volumes of the sites studied. This method represents the actual existing technique for estimating cutting volume in the province of Quebec. It involves summing the cut volume for all forest stands. The cut volume is estimated by multiplying the area of each stand by its estimated volume per hectare obtained from standard stock tables provided by the governement. The resulting total estimated volume per cut-block for all three methods was then compared with the actual measured cut-block volume (MEASURED). This analysis revealed a significant difference between MEASURED and MNR methods with the MNR volume estimate being 30 % higher than MEASURED. However, no significant difference from MEASURED was observed for volume estimates for the ROAD and STRATIFIED methods which respectively had estimated cutting volumes 19 % and 5 % lower than MEASURED. Thus the ROAD and STRATIFIED methods are good ways to estimate cut-block volumes after road right-of-way harvest for conditions similar to those examined in this study.
Resumo:
"Litter quality and environmental effects on Scots pine (Pinus sylvestris L.) fine woody debris (FWD) decomposition were examined in three forestry-drained peatlands representing different site types along a climatic gradient from the north boreal (Northern Finland) to south (Southern Finland) and hemiboreal (Central Estonia) conditions. Decomposition (percent mass loss) of FWD with diameter <= 10 mm (twigs) and FWD with diameter > 10 mm (branches) was measured using the litter bag method over 1-4-year periods. Overall, decomposition rates increased from north to south, the rate constants (k values) varying from 0.128 to 0.188 year(-1) and from 0.066 to 0.127 year(-1) for twigs and branches, respectively. On average, twigs had lost 34%, 19% and 19%, and branches 25%, 17% and 11% of their initial mass after 2 years of decomposition at the hemiboreal, south boreal and north boreal sites, respectively. After 4 years at the south boreal site the values were 48% for twigs and 42% for branches. Based on earlier studies, we suggest that the decomposition rates that we determined may be used for estimating Scots pine FWD decomposition in the boreal zone, also in upland forests. Explanatory models accounted for 50.4% and 71.2% of the total variation in FWD decomposition rates when the first two and all years were considered, respectively. The variables most related to FWD decomposition included the initial ash, water extractives and Klason lignin content of litter, and cumulative site precipitation minus potential evapotranspiration. Simulations of inputs and decomposition of Scots pine FWD and needle litter in south boreal conditions over a 60-year period showed that 72 g m(-2) of organic matter from FWD vs. 365 g m(-2) from needles accumulated in the forest floor. The annual inputs varied from 5.7 to 15.6 g m(-2) and from 92 to 152 g m(-2) for FWD and needles, respectively. Each thinning caused an increase in FWD inputs, Up to 510 g m(-2), while the needle inputs did not change dramatically. Because the annual FWD inputs were lowered following the thinnings, the overall effect of thinnings on C accumulation from FWD was slightly negative. The contribution of FWD to soil C accumulation, relative to needle litter, seems to be rather minor in boreal Scots pine forests. (C) 2008 Elsevier B.V. All rights reserved."