903 resultados para blood clotting factor 10a
Resumo:
Prostacyclin synthase and thromboxane synthase signaling via arachidonic acid metabolism affects a number of tumor cell survival pathways such as cell proliferation, apoptosis, tumor cell invasion and metastasis, and angiogenesis. However, the effects of these respective synthases differ considerably with respect to the pathways described. While prostacyclin synthase is generally believed to be anti-tumor, a pro-carcinogenic role for thromboxane synthase has been demonstrated in a variety of cancers. The balance of oppositely-acting COX-derived prostanoids influences many processes throughout the body, such as blood pressure regulation, clotting, and inflammation. The PGI2/TXA2 ratio is of particular interest in-vivo, with the corresponding synthases shown to be differentially regulated in a variety of disease states. Pharmacological inhibition of thromboxane synthase has been shown to significantly inhibit tumor cell growth, invasion, metastasis and angiogenesis in a range of experimental models. In direct contrast, prostacyclin synthase overexpression has been shown to be chemopreventive in a murine model of the disease, suggesting that the expression and activity of this enzyme may protect against tumor development. In this review, we discuss the aberrant expression and known functions of both prostacyclin synthase and thromboxane synthase in cancer. We discuss the effects of these enzymes on a range of tumor cell survival pathways, such as tumor cell proliferation, induction of apoptosis, invasion and metastasis, and tumor cell angiogenesis. As downstream signaling pathways of these enzymes have also been implicated in cancer states, we examine the role of downstream effectors of PGIS and TXS activity in tumor growth and progression. Finally, we discuss current therapeutic strategies aimed at targeting these enzymes for the prevention/treatment of cancer. © 2010 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we present the results of purification and characterization of an arginine/lysine amidase from the venom of Ophiophagus hannah (OhS1). It was purified by Sephadex G-75 gel filtration and ion-exchange chromatography on DEAE-Sepharose CL-6B. It is a protein of about 43,000, consisting of a single polypeptide chain. It is a minor component in the venom. The purified enzyme was capable of hydrolysing several tripeptidyl-p-nitroanilide substrates having either arginine or lysine as the C-terminal residue. We studied the kinetic parameters of OhS1 on six these chromogenic substrates. OhS1 did not clot fibrinogen. Electrophoresis of fibrinogen degraded with OhS1 revealed the disappearance of the alpha- and beta-chains and the appearance of lower mel. wt fragments. OhS1 had no hemorrhagic activity. It did not hydrolyse casein, nor did it act on blood coagulation factor X, prothrombin and plasminogen. The activity of OhS1 was completely inhibited by NPGB, PMSF, DFP, benzamidine and soybean trypsin inhibitor, suggesting it is a serine protease. Metal chelator (EDTA) had no effect on it.
Resumo:
通过G-75(超细)凝胶过渡,快速蛋白液相色谱(FPLC)阴离子柱两步离子交换从眼镜王蛇毒中分离得到了一个特异的血液凝固第X因子激活剂。在碱性聚丙烯酰胺凝胶电泳和SDS-聚丙烯酰胺凝胶电泳中均呈一条均一的带。纯化的眼镜王蛇毒第X因子激活剂不能作用于纤维蛋白原、凝血酶原、蛋白C、纤溶酶原,对6种人工合成小肽发色底物及BAEE的水解实验表明它不能水解大多数小肽底物,不具备水解BAEE的酯酶活性,表明了它对大分子及小分子底物作用专一性较高,同时表明了对FX的作用是较为专一的。抑制剂研究结果表明它对FX的激活活性被丝氨酸蛋白酶的抑制剂PMSF、TPCK等抑制,而金属离子螯合剂EDTA则无影响,表明眼镜王蛇毒血液凝固第X因子激活剂是一个丝氨酸蛋白酶。
Resumo:
Enzymes and biochemical mechanisms essential to survival are under extreme selective pressure and are highly conserved through evolutionary time. We applied this evolutionary concept to barnacle cement polymerization, a process critical to barnacle fitness that involves aggregation and cross-linking of proteins. The biochemical mechanisms of cement polymerization remain largely unknown. We hypothesized that this process is biochemically similar to blood clotting, a critical physiological response that is also based on aggregation and cross-linking of proteins. Like key elements of vertebrate and invertebrate blood clotting, barnacle cement polymerization was shown to involve proteolytic activation of enzymes and structural precursors, transglutaminase cross-linking and assembly of fibrous proteins. Proteolytic activation of structural proteins maximizes the potential for bonding interactions with other proteins and with the surface. Transglutaminase cross-linking reinforces cement integrity. Remarkably, epitopes and sequences homologous to bovine trypsin and human transglutaminase were identified in barnacle cement with tandem mass spectrometry and/or western blotting. Akin to blood clotting, the peptides generated during proteolytic activation functioned as signal molecules, linking a molecular level event (protein aggregation) to a behavioral response (barnacle larval settlement). Our results draw attention to a highly conserved protein polymerization mechanism and shed light on a long-standing biochemical puzzle. We suggest that barnacle cement polymerization is a specialized form of wound healing. The polymerization mechanism common between barnacle cement and blood may be a theme for many marine animal glues.
Resumo:
Phosphatidylserine (PS) is a member of the class of phospholipids, and is distributed among all cells of mammalians, playing important roles in diverse biological processes, including blood clotting and apoptosis. When externalized, PS is a ligand that is recognized on apoptotic cells. It has been considered that before externalization PS is oxidized and oxPS enhance the recognition by macrophages receptors, however the knowledge about oxidation of PS is still limited. PS, like others phospholipids, has two fatty acyl chains and one polar head group, in this case is the amino acid serine. The modifications in PS structure can occur by oxidation of the unsaturated fatty acyl chains and by glycation of the polar head group, due to free amine group, thus increasing the susceptibility to oxidative events. The main goal of this work was to characterize and identify oxidized and glycoxidized PS, contributing to the knowledge of the biological role of oxidation products of PS, as well as of glycated PS, in immune and inflammatory processes. To achieve this goal, PS standards (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho- L-serine (POPS), 1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine (DPPS), 1- palmitoyl-2-linoleoyl-sn-glycero-3-phospho-L-serine (PLPS) and 1-palmitoyl-2- arachidonoyl-sn-glycero-3-phospho-L-serine (PAPS)) and glycated PS (PAPS and POPS) were induced to oxidize in model systems, using different oxidant reagents: HO• and 2,2'-azobis-2-methyl-propanimidamide dihydrochloride (AAPH) . The detailed structural characterization of the oxidative products was performed by ESI-MS and MS/MS coupled to separation techniques such as off line TLC-MS and on line LC-MS, in order to obtained better characterization of the larger number of PS and glycated PS oxidation products. The results obtained in this work allowed to identify several oxidation products of PS and glycated PS with modifications in unsaturated fatty acyl chain. Also, oxidation products formed due to structural changes in the serine polar head with formation of terminal acetamide, terminal hydroperoxyacetaldehyde.and terminal acetic acid (glycerophosphacetic acid, GPAA) were identified. The mass spectrometric specific fragmentation pathway of each type of oxidation product was determined using different mass spectrometry approaches. Based on the identified fragmentation pathways, targeted lipidomic analysis was performed to detect oxidation products modified in serine polar head in HaCaT cell line treated with AAPH. The GPAA was detected in HaCaT cells treated with AAPH to induce oxidative stress, thus confirming that modifications in PS polar head is possible to occur in biological systems. Furthermore, it was found that glycated PS species are more prone to oxidative modifications when compared with non glycated PS. During oxidation of glycated PS, besides the oxidation in acyl chains, new oxidation products due to oxidation of the glucose moiety were identified, including PS advanced glycation end products (PSAGES). To investigate if UVA oxidative stress exerted changes in the lipidome of melanoma cell lines, particularly in PS profile, a lipidomic analysis was performed. The lipid profile was obtained using HILIC-LC-MS and GC-MS analysis of the total lipid extracts obtained from human melanoma cell line (SKMEL- 28) after UVA irradiation at 0, 2 and 24 hours. The results did not showed significant differences in PS content. At molecular level, only PS (18:0:18:1) decreased at the moment of irradiation. The most significant changes in phospholipids content occurred in phosphatidylcholines (PC) and phosphatidylinositol (PI) classes, with an increase of mono-unsaturated fatty acid (MUFA), similarly as observed for the fatty acid analysis. Overall, these data indicate that the observed membrane lipid changes associated with lipogenesis after UVA exposure may be correlated with malignant transformations associated with cancer development and progression. Despite of UVA radiation is associated with oxidative damage, in this work was not possible observe oxidation phospholipids. The anti/pro-inflammatory properties of the oxidized PLPS (oxPLPS) versus non-oxidized PLPS were tested on LPS stimulated RAW 264.7 macrophages. The modulation of intracellular signaling pathways such as NF-kB and MAPK cascades by oxPLPS and PS was also examined in this study. The results obtained from evaluation of anti/pro-inflammatory properties showed that neither PLPS or oxPLPS species activated the macrophages. Moreover only oxidized PLS were found to significantly inhibit NO production and iNOS and il1β gene transcription induced by LPS. The analysis at molecular level showed that this was the result of the attenuation of LPS-induced c-Jun-N-terminal kinase (JNK) and p65 NF-kB nuclear translocation. Overall these data suggest that oxPLPS, but not native PLPS, mitigates pro-inflammatory signaling in macrophages, contributing to containment of inflammation during apoptotic cell engulfment. The results obtained in this work provides new information on the modifications of PS, facilitating the identification of oxidized species in complex samples, namely under physiopathologic conditions and also contributes to a better understanding of the role of oxPS and PS in the inflammatory response, in the apoptotic process and other biological functions.
Resumo:
Disertação de mestrado, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2015
Resumo:
We investigated the relationship between the severity and incidence of resistance among Norway rats (Rattus norvegicus) on a farm in Wales and the subsequent outcome of a practical rodent control operation. Bromadiolone resistance factors were estimated for rats trapped on the farm using the blood clotting response test, and were found to be 2 to 3 for male rats and approximately 6 for females. The incidence of resistance in the rat population was high. Infestation size was estimated by census baiting and tracking, and was found to be substantial, with a maximum of 6.5 kg of bait being eaten on a single night. A proprietary rodenticide (Deadline (TM)), containing 0.005% bromadiolone, was used to control the infestation. The duration of baiting was 35 days and, according to the two methods of assessment used, treatment success was in the region of 87 and 93%. No evidence was observed of a significant impact of resistance on the rat control operation, and the remaining rats of this very heavy infestation would probably have been controlled if baiting had continued for longer.
Resumo:
Anticoagulant compounds, i.e., derivatives of either 4-hydroxycoumarin (e.g., warfarin, bromadiolone) or indane-1,3-dione (e.g., diphacinone, chlorophacinone), have been in worldwide use as rodenticides for > 50 years. These compounds inhibit blood coagulation by repression of the vitamin K reductase reaction (VKOR). Anticoagulant-resistant rodent populations have been reported from many countries and pose a considerable problem for pest control. Resistance is transmitted as an autosomal dominant trait although, until recently, the basic genetic mutation was unknown. Here, we report on the identification of eight different mutations in the VKORC1 gene in resistant laboratory strains of brown rats and house mice and in wild-caught brown rats from various locations in Europe with five of these mutations affecting only two amino acids (Tyr139Cys, Tyr139Ser, Tyr139Phe and Leu128Gln, Leu128Ser). By recombinant expression of VKORC1 constructs in HEK293 cells we demonstrate that mutations at Tyr139 confer resistance to warlarin at variable degrees while the other mutations, in addition, dramatically reduce VKOR activity. Our data strongly argue for at least seven independent mutation events in brown rats and two in mice. They suggest that mutations in VKORC1 are the genetic basis of anticoagulant resistance in wild populations of rodents, although the mutations alone do not explain all aspects of resistance that have been reported. We hypothesize that these mutations, apart from generating structural changes in the VKORC1 protein, may induce compensatory mechanisms to maintain blood clotting. Our findings provide the basis for a DNA-based field monitoring of anticoagulant resistance in rodents.
Resumo:
Diets high in monounsaturated fatty acids (MUFA) are increasingly being recommended as a highly-effective cholesterol-lowering strategy in populations at risk of CHD. However, the need for a re-appraisal of the benefits of diets rich in MUFA became apparent as a result of recent studies showing that meals high in olive oil cause greater postprandial activation of blood coagulation factor VII than meals rich in saturated fatty acids. The present review evaluates the evidence for the effects of MUFA-rich diets on fasting and postprandial measurements of haemostasis, and describes data from a recently-completed long-term controlled dietary intervention study. The data show that a background diet high in MUFA has no adverse effect on fasting haemostatic variables and decreases the postprandial activation of factor VII in response to a standard fat-containing meal. Since the same study also showed a significant reduction in the ex vivo activation of platelets in subjects on the high-MUFA diet, the overall findings suggest that there is no reason for concern regarding adverse haemostatic consequences of high-MUFA diets.
Resumo:
The effects of parasitic infections in condition factor, hematocrit, hemoglobin, mean corpuscular hemoglobin concentration (MCHC), and leucocytes and thrombocytes distribution in Piaractus mesopotamicus, Leporinus macrocephalus, hybrid tambacu (P. mesopotamicus x Colossoma macropomum and Brycon amazonicus collected in feefishing from Franca, São Paulo, Brazil were evaluated. Parasitized tambacu and L. macrocephalus had higher (p<0.05) condition factor than unparasitized fish. However, the contrary occurred in P. mesopotamicus and B. amazonicus. Changes in the hematocrit, hemoglobin and MCHC were not related to parasitism. Parasitic infections did not cause effect on leucocytes and thrombocytes percentage (p>0.05) of tambacu. In P. mesopotamicus parasitized by Monogenea Anacanthorus penilabiatus and dinoflagellate Piscinoodinium pillulare, increase in monocytes and decrease in thrombocytes percentage (p<0.05) were found. However, the same parasitic association in L. macrocephalus caused a decrease in lymphocytes percentage accompanied by increase in neutrophils percentage (p<0.05). In B. amazonicus, infection by Ichthyophthirius multifiliis, P. pillulare and monogeneans caused increase in neutrophils percentage.
Resumo:
Bothrombin, a snake-venom serine protease, specifically cleaves fibrinogen, releasing fibrinopeptide A to form non-crosslinked soft clots, aggregates platelets in the presence of exogeneous fibrinogen and activates blood coagulation factor VIII. Bothrombin shares high sequence homology with other snake-venom proteases such as batroxobin (94% identity), but only 30 and 34% identity with human alpha-thrombin and trypsin, respectively. Single crystals of bothrombin have been obtained and X-ray diffraction data have been collected at the Laboratorio Nacional de Luz Sincrotron to a resolution of 2.8 Angstrom. The crystals belong to the space group P2(1)2(1)2(1), with unit-cell parameters a = 94.81, b = 115.68, c = 155.97 Angstrom.
Resumo:
A comparison was made of autogenous grafts of rib cartilage with and without removal of the perichondrium, applied to the malar process of rats. Seventy-two male albino rats were divided into two groups according to the kind of graft received by each animal. The experimental periods were 5, 10, 20, 30, 60 and 120 postoperative days. The results showed that, in the control group, the grafts maintained their vitality for the whole experimental period and the perichondrium was biologically integrated into the host bed. Appositional growth was also observed. The treated animals showed intense resorption of the grafts and more intense bone neoformation. The newly formed bone was in intimate contact with the graft in both groups.
Resumo:
This study investigates the thrombocyte aggregation process in the South American fresh water turtle (Phrynopys hilarii) using electron microscopy. Blood was taken from surgically exposed lateral neck vessels often turtles Phrynopys hilarii during the spring and summer seasons, when the mean temperature is 37°C. Blood samples were fixed with Karnovsky solution for processing by transmission electron microscopy. The turtle thrombocytes were spindle-shaped with lobulated nuclei. Prominent vesicles and canaliculi were found throughout the cytoplasm. The cytoplasm organelles showed an agranular endoplasmatic reticulum, Golgi complex near the centrioles and scattered free ribosomes. These cells are similar to bird thrombocytes but distinct from fish and frog thrombocytes. Blood clotting time was 5 min ± 30 sec measured by the Lee and White method. Structural alterations resulting from the aggregation process occurred after activation. Thrombocytes developed numerous filopodial projections, an increased number of vacuoles and changed from spindle to spherical shape. P. hilarii thrombocytes have different morphologic characteristics compared to other non-mammalian vertebrate cells. These cells can participate in the aggregation process, as observed in birds.
Resumo:
Objective - To evaluate adverse effects of long-term oral administration of carprofen, etodolac, flunixin meglumine, ketoprofen, and meloxicam in dogs. Animals - 36 adult dogs. Procedures - Values for CBC, urinalysis, serum biochemical urinalyses, and occult blood in feces were investigated before and 7, 30, 60, and 90 days after daily oral administration (n = 6 dogs/group) of lactose (1 mg/kg, control treatment), etodolac (15 mg/kg), meloxicam (0.1 mg/kg), carprofen (4 mg/kg), and ketoprofen (2 mg/kg for 4 days, followed by 1 mg/kg daily thereafter) or flunixin (1 mg/kg for 3 days, with 4-day intervals). Gastroscopy was performed before and after the end of treatment. Results - For serum γ-glutamyltransferase activity, values were significantly increased at day 30 in dogs treated with lactose, etodolac, and meloxicam within groups. Bleeding time was significantly increased in dogs treated with carprofen at 30 and 90 days, compared with baseline. At 7 days, bleeding time was significantly longer in dogs treated with meloxicam, ketoprofen, and flunixin, compared with control dogs. Clotting time increased significantly in all groups except those treated with etodolac. At day 90, clotting time was significantly shorter in flunixin-treated dogs, compared with lactose-treated dogs. Gastric lesions were detected in all dogs treated with etodolac, ketoprofen, and flunixin, and 1 of 6 treated with carprofen. Conclusions and Clinical Relevance - Carprofen induced the lowest frequency of gastrointestinal adverse effects, followed by meloxicam. Monitoring for adverse effects should be considered when nonsteroidal anti-inflammatory drugs are used to treat dogs with chronic pain.
Resumo:
The genus Stryphnodendron (S.) belongs to the family Leguminosae, subfamily Mimosoideae, which includes mostly trees of tropical and subtropical South America. Extracts of the stem bark are used traditionally by the local population to treat leucorrhoea and diarrhoea, as anti-inflammatory and antiseptic agents (antimicrobial) and to promote blood clotting and wound healing, and in a few cases of gastric ulcers. A review of the literature presented a previous morpho-anatomical study only for S. adstringens (Mart.) Coville. The aim of the present work is to compare morpho-anatomically the stem bark and leaves of three species of Stryphnodendron, known popularly as barbatimão: S. adstringens, S. polyphyllum and S. obovatum, in order to help botanical identification and contribute to quality control. Macro- and microscopical evaluation of the stem barks revealed no significant differences among the species. Morphological analyses of the leaves revealed differences in size, coloration, and pubescence. The leaves of S. adstringens are the largest, glabrous, and concolor. The leaves of S. polyphyllum are smaller, pubescent, and discolor; whereas the leaves of S. obovatum are the same size as those of S. polyphyllum, however, they are glabrous, and discolor.