910 resultados para automatic programming
Resumo:
The purpose of this thesis is to present the concept of simulation for automatic machines and how it might be used to test and debug software implemented for an automatic machine. The simulation is used to detect errors and allow corrections of the code before the machine has been built. Simulation permits testing different solutions and improving the software to get an optimized one. Additionally, simulation can be used to keep track of a machine after the installation in order to improve the production process during the machine’s life cycle. The central argument of this project is discussing the advantage of using virtual commissioning to test the implemented software in a virtual environment. Such an environment is getting benefit in avoiding potential damages as well as reduction of time to have the machine ready to work. Also, the use of virtual commissioning allows testing different solutions without high losses of time and money. Subsequently, an optimized solution could be found after testing different proposed solutions. The software implemented is based on the Object-Oriented Programming paradigm which implies different features such as encapsulation, modularity, and reusability of the code. Therefore, this way of programming helps to get simplified code that is easier to be understood and debugged as well as its high efficiency. Finally, different communication protocols are implemented in order to allow communication between the real plant and the simulation model. By the outcome that this communication provides, we might be able to gather all the necessary data for the simulation and the analysis, in real-time, of the production process in a way to improve it during the machine life cycle.
Resumo:
Combinatorial decision and optimization problems belong to numerous applications, such as logistics and scheduling, and can be solved with various approaches. Boolean Satisfiability and Constraint Programming solvers are some of the most used ones and their performance is significantly influenced by the model chosen to represent a given problem. This has led to the study of model reformulation methods, one of which is tabulation, that consists in rewriting the expression of a constraint in terms of a table constraint. To apply it, one should identify which constraints can help and which can hinder the solving process. So far this has been performed by hand, for example in MiniZinc, or automatically with manually designed heuristics, in Savile Row. Though, it has been shown that the performances of these heuristics differ across problems and solvers, in some cases helping and in others hindering the solving procedure. However, recent works in the field of combinatorial optimization have shown that Machine Learning (ML) can be increasingly useful in the model reformulation steps. This thesis aims to design a ML approach to identify the instances for which Savile Row’s heuristics should be activated. Additionally, it is possible that the heuristics miss some good tabulation opportunities, so we perform an exploratory analysis for the creation of a ML classifier able to predict whether or not a constraint should be tabulated. The results reached towards the first goal show that a random forest classifier leads to an increase in the performances of 4 different solvers. The experimental results in the second task show that a ML approach could improve the performance of a solver for some problem classes.
Resumo:
A long-standing debate in the literature is whether attention can form two or more independent spatial foci in addition to the well-known unique spatial focus. There is evidence that voluntary visual attention divides in space. The possibility that this also occurs for automatic visual attention was investigated here. Thirty-six female volunteers were tested. In each trial, a prime stimulus was presented in the left or right visual hemifield. This stimulus was characterized by the blinking of a superior, middle or inferior ring, the blinking of all these rings, or the blinking of the superior and inferior rings. A target stimulus to which the volunteer should respond with the same side hand or a target stimulus to which she should not respond was presented 100 ms later in a primed location, a location between two primed locations or a location in the contralateral hemifield. Reaction time to the positive target stimulus in a primed location was consistently shorter than reaction time in the horizontally corresponding contralateral location. This attentional effect was significantly smaller or absent when the positive target stimulus appeared in the middle location after the double prime stimulus. These results suggest that automatic visual attention can focus on two separate locations simultaneously, to some extent sparing the region in between.
Resumo:
In this paper, we initially present an algorithm for automatic composition of melodies using chaotic dynamical systems. Afterward, we characterize chaotic music in a comprehensive way as comprising three perspectives: musical discrimination, dynamical influence on musical features, and musical perception. With respect to the first perspective, the coherence between generated chaotic melodies (continuous as well as discrete chaotic melodies) and a set of classical reference melodies is characterized by statistical descriptors and melodic measures. The significant differences among the three types of melodies are determined by discriminant analysis. Regarding the second perspective, the influence of dynamical features of chaotic attractors, e.g., Lyapunov exponent, Hurst coefficient, and correlation dimension, on melodic features is determined by canonical correlation analysis. The last perspective is related to perception of originality, complexity, and degree of melodiousness (Euler's gradus suavitatis) of chaotic and classical melodies by nonparametric statistical tests. (c) 2010 American Institute of Physics. [doi: 10.1063/1.3487516]
Resumo:
Complex networks have been characterised by their specific connectivity patterns (network motifs), but their building blocks can also be identified and described by node-motifs-a combination of local network features. One technique to identify single node-motifs has been presented by Costa et al. (L. D. F. Costa, F. A. Rodrigues, C. C. Hilgetag, and M. Kaiser, Europhys. Lett., 87, 1, 2009). Here, we first suggest improvements to the method including how its parameters can be determined automatically. Such automatic routines make high-throughput studies of many networks feasible. Second, the new routines are validated in different network-series. Third, we provide an example of how the method can be used to analyse network time-series. In conclusion, we provide a robust method for systematically discovering and classifying characteristic nodes of a network. In contrast to classical motif analysis, our approach can identify individual components (here: nodes) that are specific to a network. Such special nodes, as hubs before, might be found to play critical roles in real-world networks.
Resumo:
An implementation of a computational tool to generate new summaries from new source texts is presented, by means of the connectionist approach (artificial neural networks). Among other contributions that this work intends to bring to natural language processing research, the use of a more biologically plausible connectionist architecture and training for automatic summarization is emphasized. The choice relies on the expectation that it may bring an increase in computational efficiency when compared to the sa-called biologically implausible algorithms.
Resumo:
The main objective of this paper is to relieve the power system engineers from the burden of the complex and time-consuming process of power system stabilizer (PSS) tuning. To achieve this goal, the paper proposes an automatic process for computerized tuning of PSSs, which is based on an iterative process that uses a linear matrix inequality (LMI) solver to find the PSS parameters. It is shown in the paper that PSS tuning can be written as a search problem over a non-convex feasible set. The proposed algorithm solves this feasibility problem using an iterative LMI approach and a suitable initial condition, corresponding to a PSS designed for nominal operating conditions only (which is a quite simple task, since the required phase compensation is uniquely defined). Some knowledge about the PSS tuning is also incorporated in the algorithm through the specification of bounds defining the allowable PSS parameters. The application of the proposed algorithm to a benchmark test system and the nonlinear simulation of the resulting closed-loop models demonstrate the efficiency of this algorithm. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The design of supplementary damping controllers to mitigate the effects of electromechanical oscillations in power systems is a highly complex and time-consuming process, which requires a significant amount of knowledge from the part of the designer. In this study, the authors propose an automatic technique that takes the burden of tuning the controller parameters away from the power engineer and places it on the computer. Unlike other approaches that do the same based on robust control theories or evolutionary computing techniques, our proposed procedure uses an optimisation algorithm that works over a formulation of the classical tuning problem in terms of bilinear matrix inequalities. Using this formulation, it is possible to apply linear matrix inequality solvers to find a solution to the tuning problem via an iterative process, with the advantage that these solvers are widely available and have well-known convergence properties. The proposed algorithm is applied to tune the parameters of supplementary controllers for thyristor controlled series capacitors placed in the New England/New York benchmark test system, aiming at the improvement of the damping factor of inter-area modes, under several different operating conditions. The results of the linear analysis are validated by non-linear simulation and demonstrate the effectiveness of the proposed procedure.
Resumo:
This paper proposes an approach of optimal sensitivity applied in the tertiary loop of the automatic generation control. The approach is based on the theorem of non-linear perturbation. From an optimal operation point obtained by an optimal power flow a new optimal operation point is directly determined after a perturbation, i.e., without the necessity of an iterative process. This new optimal operation point satisfies the constraints of the problem for small perturbation in the loads. The participation factors and the voltage set point of the automatic voltage regulators (AVR) of the generators are determined by the technique of optimal sensitivity, considering the effects of the active power losses minimization and the network constraints. The participation factors and voltage set point of the generators are supplied directly to a computational program of dynamic simulation of the automatic generation control, named by power sensitivity mode. Test results are presented to show the good performance of this approach. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper addresses the non-preemptive single machine scheduling problem to minimize total tardiness. We are interested in the online version of this problem, where orders arrive at the system at random times. Jobs have to be scheduled without knowledge of what jobs will come afterwards. The processing times and the due dates become known when the order is placed. The order release date occurs only at the beginning of periodic intervals. A customized approximate dynamic programming method is introduced for this problem. The authors also present numerical experiments that assess the reliability of the new approach and show that it performs better than a myopic policy.
Resumo:
Intravascular ultrasound (IVUS) image segmentation can provide more detailed vessel and plaque information, resulting in better diagnostics, evaluation and therapy planning. A novel automatic segmentation proposal is described herein; the method relies on a binary morphological object reconstruction to segment the coronary wall in IVUS images. First, a preprocessing followed by a feature extraction block are performed, allowing for the desired information to be extracted. Afterward, binary versions of the desired objects are reconstructed, and their contours are extracted to segment the image. The effectiveness is demonstrated by segmenting 1300 images, in which the outcomes had a strong correlation to their corresponding gold standard. Moreover, the results were also corroborated statistically by having as high as 92.72% and 91.9% of true positive area fraction for the lumen and media adventitia border, respectively. In addition, this approach can be adapted easily and applied to other related modalities, such as intravascular optical coherence tomography and intravascular magnetic resonance imaging. (E-mail: matheuscardosomg@hotmail.com) (C) 2011 World Federation for Ultrasound in Medicine & Biology.
Resumo:
The economic occupation of an area of 500 ha for Piracicaba was studied with the irrigated cultures of maize, tomato, sugarcane and beans, having used models of deterministic linear programming and linear programming including risk for the Target-Motad model, where two situations had been analyzed. In the deterministic model the area was the restrictive factor and the water was not restrictive for none of the tested situations. For the first situation the gotten maximum income was of R$ 1,883,372.87 and for the second situation it was of R$ 1,821,772.40. In the model including risk a producer that accepts risk can in the first situation get the maximum income of R$ 1,883,372. 87 with a minimum risk of R$ 350 year(-1), and in the second situation R$ 1,821,772.40 with a minimum risk of R$ 40 year(-1). Already a producer averse to the risk can get in the first situation a maximum income of R$ 1,775,974.81 with null risk and for the second situation R$ 1.707.706, 26 with null risk, both without water restriction. These results stand out the importance of the inclusion of the risk in supplying alternative occupations to the producer, allowing to a producer taking of decision considered the risk aversion and the pretension of income.
Resumo:
Listeriosis is a serious foodborne disease caused by Listeria monocytogenes, a pathogen often found in food processing plants. Poultry meat and its derivatives may harbor L. monocytogenes even if good manufacturing practices are implanted in abattoirs. Little information exists in Brazil on the frequency of L. monocytogenes contamination, even though the country is considered the top poultry meat exporter in the world. This study attempted to compare 2 exporters poultry facilities following same the standards but differing only in manual (plant M) or automatic (plant A) evisceration. Eight hundred fifty-one samples from food, food contact and non-food contact surfaces, water, and workers` hands were collected from cage to finished products over a 1-yr period. In plant A, 20.1% of the samples were positive for L. monocytogenes, whereas in plant M, 16.4% was found. The greatest incidence of contamination with the pathogen in plant A was found in non- food contact surfaces (27.3%), while in plant M, it was found in products (19.4%). The most prevalent serovars were 1/2a or 3a (plant M) and 4b, 4d, or 4e (plant A). Despite having proper hygiene and good manufacturing practices, controlling the entry and persistence of L. monocytogenes in processing facilities remains a formidable task.