997 resultados para assembly tree
Resumo:
To investigate the effects of adopting a pull system in assembly lines in contrast to a push system, simulation software called “ARENA” is used as a tool in order to present numerical results from both systems. Simulation scenarios are created to evaluate the effects of attributes changing in assembly systems, with influential factors including the change of manufacturing system (push system to pull system) and variation of demand. Moreover, pull system manufacturing consists of the addition attribute, which is the number of buffer storage. This paper will provide an analysis based on a previous case study, hence process time and workflow refer to the journal name “Optimising and simulating the assembly line balancing problem in a motorcycle manufacturing company: a case study” [2]. The implementation of the pull system mechanism is to produce a system improvement in terms of the number of Work-In-Process (WIP), total time of products in the system, and the number of finished product inventory, while retaining the same throughput.
Resumo:
Today’s highly competitive market influences the manufacturing industry to improve their production systems to become the optimal system in the shortest cycle time as possible. One of most common problems in manufacturing systems is the assembly line balancing problem. The assembly line balancing problem involves task assignments to workstations with optimum line efficiency. The line balancing technique, namely “COMSOAL”, is an abbreviation of “Computer Method for Sequencing Operations for Assembly Lines”. Arcus initially developed the COMSOAL technique in 1966 [1], and it has been mainly applied to solve assembly line balancing problems [6]. The most common purposes of COMSOAL are to minimise idle time, optimise production line efficiency, and minimise the number of workstations. Therefore, this project will implement COMSOAL to balance an assembly line in the motorcycle industry. The new solution by COMSOAL will be used to compare with the previous solution that was developed by Multi‐Started Neighborhood Search Heuristic (MSNSH), which will result in five aspects including cycle time, total idle time, line efficiency, average daily productivity rate, and the workload balance. The journal name “Optimising and simulating the assembly line balancing problem in a motorcycle manufacturing company: a case study” will be used as the case study for this project [5].
Resumo:
In the past few years, remarkable progress has been made in unveiling novel and unique optical properties of strongly coupled plasmonic nanostructures. However, application of such plasmonic nanostructures in biomedicine remains challenging due to the lack of facile and robust assembly methods for producing stable nanostructures. Previous attempts to achieve plasmonic nano-assemblies using molecular ligands were limited due to the lack of flexibility that could be exercised in forming them. Here, we report the utilization of tailor-made hyperbranched polymers (HBP) as linkers to assemble gold nanoparticles (NPs) into nano-assemblies. The ease and flexibility in tuning the particle size and number of branch ends of a HBP makes it an ideal candidate as a linker, as opposed to DNA, small organic molecules and linear or dendrimeric polymers. We report a strong correlation of polymer (HBP) concentration with the size of the hybrid nano-assemblies and “hot-spot” density. We have shown that such solutions of stable HBP-gold nano-assemblies can be barcoded with various Raman tags to provide improved surface-enhanced Raman scattering (SERS) compared with non-aggregated NP systems. These Raman barcoded hybrid nano-assemblies, with further optimization of NP shape, size and “hot-spot” density, may find application as diagnostic tools in nanomedicine.
Resumo:
Twenty first century learners operate in organic, immersive environments. A pedagogy of student-centred learning is not a recipe for rooms. A contemporary learning environment is like a landscape that grows, morphs, and responds to the pressures of the context and micro-culture. There is no single adaptable solution, nor a suite of off-the-shelf answers; propositions must be customisable and infinitely variable. They must be indeterminate and changeable; based on the creation of learning places, not restrictive or constraining spaces. A sustainable solution will be un-fixed, responsive to the life cycle of the components and materials, able to be manipulated by the users; it will create and construct its own history. Learning occurs as formal education with situational knowledge structures, but also as informal learning, active learning, blended learning social learning, incidental learning, and unintended learning. These are not spatial concepts but socio-cultural patterns of discovery. Individual learning requirements must run free and need to be accommodated as the learner sees fit. The spatial solution must accommodate and enable a full array of learning situations. It is a system not an object. Three major components: 1. The determinate landscape: in-situ concrete 'plate' that is permanent. It predates the other components of the system and remains as a remnant/imprint/fossil after the other components of the system have been relocated. It is a functional learning landscape in its own right; enabling a variety of experiences and activities. 2. The indeterminate landscape: a kit of pre-fabricated 2-D panels assembled in a unique manner at each site to suit the client and context. Manufactured to the principles of design-for-disassembly. A symbiotic barnacle like system that attaches itself to the existing infrastructure through the determinate landscape which acts as a fast growth rhizome. A carapace of protective panels, infinitely variable to create enclosed, semi-enclosed, and open learning places. 3. The stations: pre-fabricated packages of highly-serviced space connected through the determinate landscape. Four main types of stations; wet-room learning centres, dry-room learning centres, ablutions, and low-impact building services. Entirely customised at the factory and delivered to site. The stations can be retro-fitted to suit a new context during relocation. Principles of design for disassembly: material principles • use recycled and recyclable materials • minimise the number of types of materials • no toxic materials • use lightweight materials • avoid secondary finishes • provide identification of material types component principles • minimise/standardise the number of types of components • use mechanical not chemical connections • design for use of common tools and equipment • provide easy access to all components • make component size to suite means of handling • provide built in means of handling • design to realistic tolerances • use a minimum number of connectors and a minimum number of types system principles • design for durability and repeated use • use prefabrication and mass production • provide spare components on site • sustain all assembly and material information
Resumo:
Through a forest inventory in parts of the Amudarya river delta, Central Asia, we assessed the impact of ongoing forest degradation on the emissions of greenhouse gases (GHG) from soils. Interpretation of aerial photographs from 2001, combined with data on forest inventory in 1990 and field survey in 2003 provided comprehensive information about the extent and changes of the natural tugai riparian forests and tree plantations in the delta. The findings show an average annual deforestation rate of almost 1.3% and an even higher rate of land use change from tugai forests to land with only sparse tree cover. These annual rates of deforestation and forest degradation are higher than the global annual forest loss. By 2003, the tugai forest area had drastically decreased to about 60% compared to an inventory in 1990. Significant differences in soil GHG emissions between forest and agricultural land use underscore the impact of the ongoing land use change on the emission of soil-borne GHGs. The conversion of tugai forests into irrigated croplands will release 2.5 t CO2 equivalents per hectare per year due to elevated emissions of N2O and CH4. This demonstrates that the ongoing transformation of tugai forests into agricultural land-use systems did not only lead to a loss of biodiversity and of a unique ecosystem, but substantially impacts the biosphere-atmosphere exchange of GHG and soil C and N turnover processes.
Resumo:
Ebola virus is a highly pathogenic filovirus causing severe hemorrhagic fever with high mortality rates. It assembles heterogenous, filamentous, enveloped virus particles containing a negative-sense, single-stranded RNA genome packaged within a helical nucleocapsid (NC). We have used cryo-electron microscopy and tomography to visualize Ebola virus particles, as well as Ebola virus-like particles, in three dimensions in a near-native state. The NC within the virion forms a left-handed helix with an inner nucleoprotein layer decorated with protruding arms composed of VP24 and VP35. A comparison with the closely related Marburg virus shows that the N-terminal region of nucleoprotein defines the inner diameter of the Ebola virus NC, whereas the RNA genome defines its length. Binding of the nucleoprotein to RNA can assemble a loosely coiled NC-like structure; the loose coil can be condensed by binding of the viral matrix protein VP40 to the C terminus of the nucleoprotein, and rigidified by binding of VP24 and VP35 to alternate copies of the nucleoprotein. Four proteins (NP, VP24, VP35, and VP40) are necessary and sufficient to mediate assembly of an NC with structure, symmetry, variability, and flexibility indistinguishable from that in Ebola virus particles released from infected cells. Together these data provide a structural and architectural description of Ebola virus and define the roles of viral proteins in its structure and assembly
Resumo:
Chromium oxyhydroxide nanomaterials with narrow size-distribution were synthesised through a simple hydrothermal method. Experimental conditions, such as reaction duration and pH values of the precipitation process and hydrothermal treatment played important roles in determining the nature of the final product chromium oxyhydroxide nanomaterials. The effect of these synthesis parameters were studied with the assistance of X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and thermogravimetric analyses. This research has developed a controllable synthesis of Chromium oxyhydroxide nanomaterials from Chromium oxide colloids.
De Novo Transcriptome Sequence Assembly and Analysis of RNA Silencing Genes of Nicotiana benthamiana
Resumo:
Background: Nicotiana benthamiana has been widely used for transient gene expression assays and as a model plant in the study of plant-microbe interactions, lipid engineering and RNA silencing pathways. Assembling the sequence of its transcriptome provides information that, in conjunction with the genome sequence, will facilitate gaining insight into the plant's capacity for high-level transient transgene expression, generation of mobile gene silencing signals, and hyper-susceptibility to viral infection. Methodology/Results: RNA-seq libraries from 9 different tissues were deep sequenced and assembled, de novo, into a representation of the transcriptome. The assembly, of16GB of sequence, yielded 237,340 contigs, clustering into 119,014 transcripts (unigenes). Between 80 and 85% of reads from all tissues could be mapped back to the full transcriptome. Approximately 63% of the unigenes exhibited a match to the Solgenomics tomato predicted proteins database. Approximately 94% of the Solgenomics N. benthamiana unigene set (16,024 sequences) matched our unigene set (119,014 sequences). Using homology searches we identified 31 homologues that are involved in RNAi-associated pathways in Arabidopsis thaliana, and show that they possess the domains characteristic of these proteins. Of these genes, the RNA dependent RNA polymerase gene, Rdr1, is transcribed but has a 72 nt insertion in exon1 that would cause premature termination of translation. Dicer-like 3 (DCL3) appears to lack both the DEAD helicase motif and second dsRNA binding motif, and DCL2 and AGO4b have unexpectedly high levels of transcription. Conclusions: The assembled and annotated representation of the transcriptome and list of RNAi-associated sequences are accessible at www.benthgenome.com alongside a draft genome assembly. These genomic resources will be very useful for further study of the developmental, metabolic and defense pathways of N. benthamiana and in understanding the mechanisms behind the features which have made it such a well-used model plant. © 2013 Nakasugi et al.
Resumo:
Many alternative therapies are used as first aid treatment for burns, despite limited evidence supporting their use. In this study, Aloe vera, saliva and a tea tree oil impregnated dressing (Burnaid) were applied as first aid to a porcine deep dermal contact burn, compared to a control of nothing. After burn creation, the treatments were applied for 20 min and the wounds observed at weekly dressing changes for 6 weeks. Results showed that the alternative treatments did significantly decrease subdermal temperature within the skin during the treatment period. However, they did not decrease the microflora or improve re-epithelialisation, scar strength, scar depth or cosmetic appearance of the scar and cannot be recommended for the first aid treatment of partial thickness burns.
Resumo:
Genomic sequences are fundamentally text documents, admitting various representations according to need and tokenization. Gene expression depends crucially on binding of enzymes to the DNA sequence at small, poorly conserved binding sites, limiting the utility of standard pattern search. However, one may exploit the regular syntactic structure of the enzyme's component proteins and the corresponding binding sites, framing the problem as one of detecting grammatically correct genomic phrases. In this paper we propose new kernels based on weighted tree structures, traversing the paths within them to capture the features which underpin the task. Experimentally, we and that these kernels provide performance comparable with state of the art approaches for this problem, while offering significant computational advantages over earlier methods. The methods proposed may be applied to a broad range of sequence or tree-structured data in molecular biology and other domains.
Resumo:
A business process is often modeled using some kind of a directed flow graph, which we call a workflow graph. The Refined Process Structure Tree (RPST) is a technique for workflow graph parsing, i.e., for discovering the structure of a workflow graph, which has various applications. In this paper, we provide two improvements to the RPST. First, we propose an alternative way to compute the RPST that is simpler than the one developed originally. In particular, the computation reduces to constructing the tree of the triconnected components of a workflow graph in the special case when every node has at most one incoming or at most one outgoing edge. Such graphs occur frequently in applications. Secondly, we extend the applicability of the RPST. Originally, the RPST was applicable only to graphs with a single source and single sink such that the completed version of the graph is biconnected. We lift both restrictions. Therefore, the RPST is then applicable to arbitrary directed graphs such that every node is on a path from some source to some sink. This includes graphs with multiple sources and/or sinks and disconnected graphs.
Resumo:
Each September since 1983 in the rural Shire of Ravensthorpe, Western Australia, volunteers collect samples of up to 700 wildfl ower species which are then displayed in the Ravensthorpe Senior Citizens Centre from 9.00 am to 4.00 pm daily over a two-week period. This chapter offers an ethnographic interpretation of this enduring annual event focusing on the 25th show held in 2007. The study contributes to understanding the complex and nuanced role of local wildflower shows in shaping and supporting rural senses of place and of community. Importantly, this particular type of festival, and more specifically this local instance, foregrounds a less-remarked aspect of festivals, namely the (re)production and celebration of place-specific knowledge through validations of, and interconnections between, scientific flower classification and emotive experience. This feature, encapsulated in Laurel Lamperd’s poem above, invites consideration of the ways in which local place knowledge and the simultaneous (re)production of ‘place’ are constituted by a complex layering of rational, objective ways of knowing and those which emphasize emotions, aesthetics and memories. This rural wildflower show not only mobilises both the rational and the emotional in ‘making sense of the world’ for local residents and for tourists, but also offers insights into the production of place as constituted in and through relations between humans and non-human life forms (Cloke & Jones, 2001; Conradson, 2005; see also Chapter 6).
Resumo:
The global demand for food, feed, energy and water poses extraordinary challenges for future generations. It is evident that robust platforms for the exploration of renewable resources are necessary to overcome these challenges. Within the multinational framework MultiBioPro we are developing biorefinery pipelines to maximize the use of plant biomass. More specifically, we use poplar and tobacco tree (Nicotiana glauca) as target crop species for improving saccharification, isoprenoid, long chain hydrocarbon contents, fiber quality, and suberin and lignin contents. The methods used to obtain these outputs include GC-MS, LC-MS and RNA sequencing platforms. The metabolite pipelines are well established tools to generate these types of data, but also have the limitations in that only well characterized metabolites can be used. The deep sequencing will allow us to include all transcripts present during the developmental stages of the tobacco tree leaf, but has to be mapped back to the sequence of Nicotiana tabacum. With these set-ups, we aim at a basic understanding for underlying processes and at establishing an industrial framework to exploit the outcomes. In a more long term perspective, we believe that data generated here will provide means for a sustainable biorefinery process using poplar and tobacco tree as raw material. To date the basal level of metabolites in the samples have been analyzed and the protocols utilized are provided in this article.
Resumo:
Plasmonic gold nano-assemblies that self-assemble with the aid of linking molecules or polymers have the potential to yield controlled hierarchies of morphologies and consequently result in materials with tailored optical (e.g. localized surface plasmon resonances (LSPR)) and spectroscopic properties (e.g. surface enhanced Raman scattering (SERS)). Molecular linkers that are structurally well-defined are promising for forming hybrid nano-assemblies which are stable in aqueous solution and are increasingly finding application in nanomedicine. Despite much ongoing research in this field, the precise role of molecular linkers in governing the morphology and properties of the hybrid nano-assemblies remains unclear. Previously we have demonstrated that branched linkers, such as hyperbranched polymers, with specific anchoring end groups can be successfully employed to form assemblies of gold NPs demonstrating near-infrared SPRs and intense SERS scattering. We herein introduce a tailored polymer as a versatile molecular linker, capable of manipulating nano-assembly morphologies and hot-spot density. In addition, this report explores the role of the polymeric linker architecture, specifically the degree of branching of the tailored polymer in determining the formation, morphology and properties of the hybrid nano-assemblies. The degree of branching of the linker polymer, in addition to the concentration and number of anchoring groups, is observed to strongly influence the self-assembly process. The assembly morphology shifts primarily from 1D-like chains to 2D plates and finally to 3D-like globular structures, with increase in degree of branching. Insights have been gained into how the morphology influences the SERS performance of these nano-assemblies with respect to hot-spot density. These findings supplement the understanding of the morphology determining nano-assembly formation and pave the way for the possible application of these nano-assemblies as SERS bio-sensors for medical diagnostics.
Resumo:
The striped catfish (Pangasianodon hypophthalmus) culture industry in the Mekong Delta in Vietnam has developed rapidly over the past decade. The culture industry now however, faces some significant challenges, especially related to climate change impacts notably from predicted extensive saltwater intrusion into many low topographical coastal provinces across the Mekong Delta. This problem highlights a need for development of culture stocks that can tolerate more saline culture environments as a response to expansion of saline water-intruded land. While a traditional artificial selection program can potentially address this need, understanding the genomic basis of salinity tolerance can assist development of more productive culture lines. The current study applied a transcriptomic approach using Ion PGM technology to generate expressed sequence tag (EST) resources from the intestine and swim bladder from striped catfish reared at a salinity level of 9 ppt which showed best growth performance. Total sequence data generated was 467.8 Mbp, consisting of 4,116,424 reads with an average length of 112 bp. De novo assembly was employed that generated 51,188 contigs, and allowed identification of 16,116 putative genes based on the GenBank non-redundant database. GO annotation, KEGG pathway mapping, and functional annotation of the EST sequences recovered with a wide diversity of biological functions and processes. In addition, more than 11,600 simple sequence repeats were also detected. This is the first comprehensive analysis of a striped catfish transcriptome, and provides a valuable genomic resource for future selective breeding programs and functional or evolutionary studies of genes that influence salinity tolerance in this important culture species.