398 resultados para aspartic
Resumo:
Schiff base vanadium(IV) complexes of phenyl esters of the two acidic amino acids, i.e., aspartic and glutamic acid, were synthesized. The phenyl esters of these amino acids were synthesized by conventional method whereas the Schiff base vanadium(IV) complexes were synthesized using microwave irradiation. The complexes were characterized by spectroscopic tools such as IR, 1H NMR, mass (ES), ESR, and UV visible spectroscopy. All the complexes were studied for antibacterial and antifungal activity and found to be moderately active.
Resumo:
The HIV-1 envelope glycoprotein (Env) is a trimer of gp120-gp41 heterodimers and is essential for viral entry. The gp41 subunit in native, prefusion trimeric Env exists in a metastable conformation and attains a stable six-helix bundle (6-HB) conformation comprised of a trimer of N-heptad repeat (NHR) and C-heptad repeat (CHR) heterodimers, that drives the fusion of viral and cellular membranes. We attempted to stabilize native Env trimers by incorporation of mutations at the NHR-CHR interface that disrupt the postfusion 6-HB of gp41. The mutations V570D and I573D stabilize native Env of the HIV-1 JRFL strain and occlude nonneutralizing epitopes to a greater extent than the previously identified I559P mutation that is at the interface of the NHR trimers in the 6-HB. The mutations prevent soluble-CD4 (sCD4)-induced gp120 shedding and 6-HB formation. In the context of cell surface-expressed JRFL Env, introduction of a previously reported additional disulfide between residues A501 and T605 perturbs the native conformation, though this effect is partially alleviated by furin coexpression. The data suggest that positions 570 and 573 are surface proximal in native Env and that the NHR homotrimeric coiled coil in native Env terminates before or close to residue 573. Aspartic acid substitutions at these positions stabilize native trimers through destabilization of the postfusion 6-HB conformation. These mutations can be used to stabilize Env in a DNA vaccine format. IMPORTANCE The major protein on the surface of HIV-1 is the envelope (Env) glycoprotein. Env is a trimer of gp120-gp41 heterodimers. gp120 is involved in receptor/coreceptor binding and gp41 in the fusion of viral and cellular membranes. Like many other viral fusion proteins, the gp41 subunit in native trimeric Env exists in a metastable conformation. gp41 readily forms a stable six-helix bundle (6-HB) conformation comprised of a trimer of N-heptad repeat (NHR) and C-heptad repeat (CHR) heterodimers that drives fusion of viral and cellular membranes. While it is expected that native Env is a good immunogen, its metastability results in exposure of immunodominant nonneutralizing epitopes. In the present study, we stabilize native Env trimers by incorporation of a number of different mutations at the NHR-CHR interface that disrupt the postfusion 6-HB of gp41. The stabilized constructs described here can be incorporated into DNA vaccine candidates.
Resumo:
Homoserine dehydrogenase (HSD) is an oxidoreductase in the aspartic acid pathway. This enzyme coordinates a critical branch point of the metabolic pathway that leads to the synthesis of bacterial cell-wall components such as L-lysine and m-DAP in addition to other amino acids such as L-threonine, L-methionine and L-isoleucine. Here, a structural rationale for the hydride-transfer step in the reaction mechanism of HSD is reported. The structure of Staphylococcus aureus HSD was determined at different pH conditions to understand the basis for the enhanced enzymatic activity at basic pH. An analysis of the crystal structure revealed that Lys105, which is located at the interface of the catalytic and cofactor-binding sites, could mediate the hydride-transfer step of the reaction mechanism. The role of Lys105 was subsequently confirmed by mutational analysis. Put together, these studies reveal the role of conserved water molecules and a lysine residue in hydride transfer between the substrate and the cofactor.
Resumo:
A lectin from phloem exudates of Luffa acutangula (ridge gourd) was purified on chitin affinity chromatography and characterized for its amino acid sequence and to study the role of tryptophan in its activity. The purified lectin was subjected to various proteolytic digestions, and the resulting peptides were analyzed by liquid chromatography coupled electrospray ionization ion trap mass spectrometer. The peptide precursor ions were fragmented by collision-induced dissociation or electron transfer dissociation experiments, and a manual interpretation of MS/MS was performed to deduce amino acid sequence. This gave rise to almost complete sequence coverage of the lectin which showed high-sequence similarity with deduced sequences of phloem lectins present in the database. Chemical modification of lysine, tyrosine, histidine, arginine, aspartic acid, and glutamic acid residues did not inhibit the hemagglutinating activity. However, the modification of tryptophan residues using N-bromosuccinimide showed the loss of hemagglutinating activity. Additionally, the mapping of tryptophan residues was performed to determine the extent and number of residues modified, which revealed that six residues per molecule were oxidized suggesting their accessibility. The retention of the lectin activity was seen when the modifications were performed in the presence of chitooligosaccharides due to protection of a tryptophan residue (W-102) in the protein. These studies taken together have led to the identification of a particular tryptophan residue (W-102) in the activity of the lectin. (c) 2015 IUBMB Life, 67(12):943-953, 2015
Resumo:
β-lactamases are a group of enzymes that confer resistance to penam and cephem antibiotics by hydrolysis of the β-lactam ring, thereby inactivating the antibiotic. Crystallographic and computer modeling studies of RTEM-1 β-lactamase have indicated that Asp 132, a strictly conserved residue among the class A β-lactamases, appears to be involved in substrate binding, catalysis, or both. To study the contribution of residue 132 to β-lactamase function, site saturation mutagenesis was used to generate mutants coding for all 20 amino acids at position 132. Phenotypic screening of all mutants indicated that position 132 is very sensitive to amino acid changes, with only N132C, N132D, N132E, and N132Q showing any appreciable activity. Kinetic analysis of three of these mutants showed increases in K_M, along with substantial decreases in k_(cat). Efforts to trap a stable acyl-enzyme intermediate were unsuccessfuL These results indicate that residue 132 is involved in substrate binding, as well as catalysis, and supports the involvement of this residue in acylation as suggested by Strynadka et al.
Crystallographic and computer modeling studies of RTEM-1 β-lactamase have indicated that Lys 73 and Glu 166, two strictly conserved residues among the class A β-lactamases, appear to be involved in substrate binding, catalysis, or both. To study the contribution of these residues to β-lactamase function, site saturation mutagenesis was used to generate mutants coding for all 20 amino acids at positions 73 and 166. Then all 400 possible combinations of mutants were created by combinatorial mutagenesis. The colonies harboring the mutants were screened for growth in the presence of ampicillin. The competent colonys' DNA were sequenced, and kinetic parameters investigated. It was found that lysine is essential at position 73, and that position 166 only tolerated fairly conservative changes (Aspartic acid, Histidine, and Tyrosine). These functional mutants exhibited decreased kcat's, but K_M was close to wild-type levels. The results of the combinatorial mutagenesis experiments indicate that Lysis absolutely required for activity at position 73; no mutation at residue 166 can compensate for loss of the long side chain amine. The active mutants found--K73K/E166D, K73KIE166H, and K73KIE166Y were studied by kinetic analysis. These results reaffirmed the function of residue 166 as important in catalysis, specifically deacylation.
The identity of the residue responsible for enhancing the active site serine (Ser 70) in RTEM-1 β-lactamase has been disputed for some time. Recently, analysis of a crystal structure of RTEM-1 β-lactamase with covalently bound intermediate was published, and it was suggested that Lys 73, a strictly conserved residue among the class A β-lactamases, was acting as a general base, activating Ser 70. For this to be possible, the pK_a of Lys 73 would have to be depressed significantly. In an attempt to assay the pK_a of Lys 73, the mutation K73C was made. This mutant protein can be reacted with 2-bromoethylamine, and activity is restored to near wild type levels. ^(15)N-2-bromoethylamine hydrobromide and ^(13)C-2-bromoethylamine hydrobromide were synthesized. Reacting these compounds with the K73C mutant gives stable isotopic enrichment at residue 73 in the form of aminoethylcysteine, a lysine homologue. The pK_a of an amine can be determined by NMR titration, following the change in chemical shift of either the ^(15)N-amine nuclei or adjacent Be nuclei as pH is changed. Unfortunately, low protein solubility, along with probable label scrambling in the Be experiment, did not permit direct observation of either the ^(15)N or ^(13)C signals. Indirect detection experiments were used to observe the protons bonded directly to the ^(13)C atoms. Two NMR signals were seen, and their chemical shift change with pH variation was noted. The peak which was determined to correspond to the aminoethylcysteine residue shifted from 3.2 ppm down to 2.8 ppm over a pH range of 6.6 to 12.5. The pK_a of the amine at position 73 was determined to be ~10. This indicates that residue 73 does not function as a general base in the acylation step of the reaction. However the experimental measurement takes place in the absence of substrate. Since the enzyme undergoes conformational changes upon substrate binding, the measured pK_a of the free enzyme may not correspond to the pK_a of the enzyme substrate complex.
Resumo:
Toxoplasma gondii é um parasito do filo Apicomplexa que infecta uma grande variedade de hospedeiros, incluindo os humanos. O parasito invade a célula hospedeira por penetração ativa, com a participação das proteínas de suas organelas secretoras durante esse processo. Até o momento, somente um número limitado de proteínas secretoras tem sido descoberto, além disso, as moléculas efetoras envolvidas na invasão e sobrevivência do parasito não estão completamente compreendidas. A osteopontina (OPN) é uma glicofosfoproteína adesiva secretada, multifuncional, que contém o domínio arginina-glicina-ácido aspártico (RGD) de ligação à integrina, que está envolvida em uma variedade de eventos fisiológicos e patológicos, incluindo sinalização e sobrevivência celular. Pela primeira vez, nós demonstramos pelas técnicas de imunofluorescência e imunocitoquímica ultraestrutural que há uma intensa marcação para uma proteína OPN-like nos grânulos densos de taquizoítos de T. gondii extracelulares. O western blotting e o RT-PRC confirmaram a expressão de OPN-like nos taquizoítos. Nossos resultados também mostram que após a invasão dos macrófagos, a proteína OPN-like está localizada na membrana do vacúolo parasitóforo. Esses dados sugerem que os grânulos densos secretam uma proteína OPN-like, e nós podemos especular que essa proteína participa durante o processo de interação do parasito com as células hospedeiras. .
Resumo:
Aspartic acid, threonine, serine and other thermally unstable amino acids have been found in fine-grained elastic sediments of advanced geologic age. The presence of these compounds in ancient sediments conflicts with experimental data determined for their simple thermal decomposition.
Recent and Late Miocene sediments and their humic acid extracts, known to contain essentially complete suites of amino acids, were heated with H2O in a bomb at temperatures up to 500°C in order to compare the thermal decomposition characteristics of the sedimentary amino compounds.
Most of the amino acids found in protein hydrolyzates are obtained from the Miocene rock in amounts 10 to 100 times less than from the Recent sediment. The two unheated humic acids are rather similar despite their great age difference. The Miocene rock appears uncontaminated by Recent carbon.
Yields of amino acids generally decline in the heated Recent sediment. Some amino compounds apparently increase with heating time in the Miocene rock.
Relative thermal stabilities of the amino acids in sediments are generally similar to those determined using pure aqueous solutions. The relative thermal stabilities of glutamic acid, glycine, and phenylalanine vary in the Recent sediment but are uniform in the Miocene rock.
Amino acids may occur in both proteins and humic complexes in the Recent sediment, while they are probably only present in stabilized organic substances in the Miocene rock. Thermal decomposition of protein amino acids may be affected by surface catalysis in the Recent sediment. The apparent activation energy for the decomposition of alanine in this sediment is 8400 calories per mole. Yields of amino compounds from the heated sediments are not affected by thermal decomposition only.
Amino acids in sediments may only be useful for geothermometry in a very general way.
A better picture of the amino acid content of older sedimentary rocks may be obtained if these sediments are heated in a bomb with H2O at temperatures around 150°C prior to HCl hydrolysis.
Leucine-isoleucine ratios may prove to be useful as indicators of amino acid sources or for evaluating the fractionation of these substances during diagenesis. Leucine-isoleucine ratios of the Recent and Miocene sediments and humic acids are identical. The humic acids may have a continental source.
The carbon-nitrogen and carbon-hydrogen ratios of sediments and humic acids increase with heating time and temperature. Ratios comparable to those in some kerogens are found in the severely heated Miocene sediment and humic acid.
Resumo:
183 p.
Resumo:
Background: FTY720 (fingolimod, Gilenya(TM)), a structural analog of sphingosine-1-phosphate (S1P), is the first oral drug approved for treatment the relapsing-remitting form of multiple sclerosis (MS), and its efficacy has been related to induced lymphopenia and consequent immunosuppression via modulation of S1P(1) receptors (S1P(1)R). However, due to its lipophilic nature, FTY720 crosses the blood brain barrier (BBB) and could act directly on neural cells. In this study, we investigated the effectiveness of FTY720 as a neuroprotective agent using in vitro and in vivo models of excitotoxic neuronal death and examined if FTY720 exerts a direct action on neurons, or/and an indirect modulation of inflammation-mediated neurodegeneration as a possible mechanism of neuroprotection. Methods: Primary neuronal and organotypic cortical cultures were treated with N-methyl-D-aspartic acid (NMDA) to induce excitotoxic cell death (measured by lactate dehydrogenase (LDH) assay or propidium iodide uptake, respectively). The effects of FTY720 treatment (10, 100 and 1,000 nM) on neuronal survival were examined. As an in vivo model of neuronal death and inflammation, we used intracerebroventricular (icv) administration of kainic acid (KA; 0.5 mu g/2 mu l) in Sprague-Dawley rats. FTY720 was applied icv (1 mu g/2 mu l), together with KA, plus intraperitoneally (ip; 1 mg/kg) 24 h before, and daily, until sacrifice 3 days after icv. Rats were evaluated for neurological score, neuronal loss in CA3 hippocampal region and activation of microglia at the lesion site. In addition, we tested FTY720 as a modulator of microglia responses using microglial cell cultures activated with lipopolysaccharide (LPS) and its effects in stress signalling pathways using western blotting for p38 and JNK1/2 mitogen-activated protein kinases (MAPKs). Results: FTY720 was able to reduce excitotoxic neuronal death in vitro. Moreover, in vivo repeated FTY720 administration attenuated KA-induced neurodegeneration and microgliosis at the CA3 lesion site. Furthermore, FTY720 negatively modulates p38 MAPK in LPS-activated microglia, whereas it had no effect on JNK1/2 activation. Conclusions: These data support a role for FTY720 as a neuroprotective agent against excitotoxin-induced neuronal death and as a negative modulator of neuroinflammation by targeting the p38 MAPK stress signalling pathway in microglia.
Resumo:
Aspartate aminotransferase (E.C. 2.6.1.1.) from the skeletal muscle of fresh water fish Cirrhina mrigala has been purified 40 fold by ammonium sulphate fractionation, adsorption on alumina Csub(8) gel and chromatography using DEAE-cellulose column and the properties of the purified enzyme studied. The pH optimum of the enzyme is 7.8. The Km value of aspartic acid and 2-oxoglutaric acid are found to be 2.8 x 10sub(-3) M and 1.0 x 10sub(-4) M respectively. The activity of enzyme is inhibited by p-chloromercurybenzoate, hydroxylamine hydrochloride and sodium cyanide. The inhibition by pchloromercurybenzoate is reversed by reduced glutathione, B-mercaptoethanol and cysteine. Dicarboxylic acids such as maleic acid, malic acid and succinic acid inhibit the enzyme activity. The enzyme is not activated by any of the metal ions tested and heavy metal ions such as mercury and silver strongly inhibit the enzyme activity.
Resumo:
It is well known that the chemokine receptor CCR5 plays very important roles in HIV-1 virus infection. A three-dimensional molecular model of human CCR5 was generated by SYBYL, a distance geometry-based homologous modeling package, using the corresponding transmembrane domain of bacteriorhodopsin as the template. On the basis of human CCR5 model, we also built 18 3D molecular models of CCR5 in primates from Pongo pygmaeus, Pygathrix nemaeus, Macaca assameniss, Trachy-pithecus phayrei, T. francoisi, M. arotoides, Rhinopithecus roxellance, R, bieti, R. avunculus, Hylobates leucogenys, Pan troglodytes, Gorilla gorilla, Cercopithecus aethiops 1, C. aethiops 2, Papio hamadryas M. mulatta, M. fascicularis and M. nemestrina. Structural analyses and statistics results suggested that the main-chains of the primate CCR5 were similar to that of the human CCR5 and that the fit-RMS deviation values of these primate CCR5 were less than 0.1 Angstrom. Moreover, the structures of these CCR5 proteins, except those of the African green monkey 1 (C.aet1), do not have a remarkable difference. It is proved that the 14th residue is possibly very important in the inhibition infections by M-tropic HIV-1, and it is also demonstrated that the 13th residue of human CCR5 was changed from asparagine into aspartic acid in all these primates. It means that the primate CCR5 no longer depend on CD4 for efficient entry, but human CCR5 may have evolved subsequently due to the use of CD4 as a receptor, allowing the high-affinity chemokine receptor-binding site of HIV to be sequestered from host immune surveillance. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The first aim of this research was to identify fatty acids, amino acids composition of Thunnus tonggol roe and their changes during cold storage (-18'C). The second aim was to determine the changes of moisture, protein, fat and ash contents of the roe during one year cold storage (-18'C). 60 samples of longtail tuna (Thunnus tonggol) ovaries were randomly collected form Bandar-e-Abbas landings. The samples were frozen at-30'C and kept in cold store at -18'C for one year. According to a time table, the samples were examined for identification of fatty acids, amino acids, moisture, protein, fat, ash, peroxide and T.V.N. and their changes were evaluated during this time. The results showed that 26 fatty acids were identified. The unsaturated fatty acids (UFA) and saturated fatty acids (SFA) were 62.33 and 37.6%, respectively, in fresh roe. So that, DHA (C22:6) and oleic acid (C18:1) had high amounts (24.79 and 21.88%) among the UFA and palmitic acid (C16:0) was the most content (22.75%) among the SFA. The PUFA/SFA was 0.91. Also, 17 amino acids were identified that essential amino acids (EAA) and nonessential amino acids (NE) were 10478 and 7562 mg/100g, respectively, and E/NE was 1.38. Among the EAA and NE, lysine (2110mg/100g) and aspartic acid (1924 mg/100g) were the most contents. Also, results showed that moisture, ash, protein and fat contents were 72.74, 1.8, 19.88 and 4.53%, respectively, in fresh roe. The effects of freezing and cold storage on the roes showed that UFA and SFA contents have reached to 49.83 and 48.07%, respectively, at the end of cold storage. It indicated that these compounds change to each other during frozen storage. Also, n-3 and n-6 series of fatty acids were 32.75 and 1.61% in fresh roe. But their contents decreased to 22.96 and 1.25% at the end of period. Among the fatty acids, 22:6 and C16:0 had the most changes. The changes of fatty acids were significantly at 95% level except for C15:1, C18:3(n-3) and C20:4(n-6). All of the amino acids decreased in frozen storage and their changes were significantly (P<0.05). EAA was 7818 mg/100g and E/NE was 1.27 at the end of storage period. Among the amino acids, leucine and lysine had the most changes. Moisture, ash, protein and fat contents were 70.13, 1.82, 19.4 and 6.51%, respectively, at the end of storage period. The peroxide value and T.V.N. increased during storage. So that, their contents have reached to 5.86 mg/kg and 26.37 mg/100 g, respectively, at the end of frozen storage. The best shelf life of Thunnus tonggol roe was 6 or 7 months, because of lipid oxidation and increasing of peroxide.
Resumo:
Five models for human interleukin-7 (HIL-7), HIL-9, HIL-13, HIL-15 and HIL-17 have been generated by SYBYL software package. The primary models were optimized using molecular dynamics and molecular mechanics methods. The final models were optimized using a steepest descent algorithm and a subsequent conjugate gradient method. The complexes with these interleukins and the common gamma chain of interleukin-2 receptor (IL-2R) were constructed and subjected to energy minimization. We found residues, such as Gln127 and Tyr103, of the common gamma chain of IL-2R are very important. Other residues, e.g. Lys70, Asn128 and Glu162, are also significant. Four hydrophobic grooves and two hydrophilic sites converge at the active site triad of the gamma chain. The binding sites of these interleukins interaction with the common gamma chain exist in the first helical and/or the fourth helical domains. Therefore, we conclude that these interleukins binds to the common gamma chain of IL-2R by the first and the fourth helix domain. Especially at the binding sites of some residues (lysine, arginine, asparagine, glutamic acid and aspartic acid), with a discontinuous region of the common gamma chain of IL-2R, termed the interleukins binding sites (103-210). The study of these sites can be important for the development of new drugs. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A diblcok copolymer monomethoxy poly (ethylene glycol)-block-poly(L-lactide-co-2-methyl-2-carboxyl-propylene carbonate) (MPEG-b-P(LA-co-MCC)) was obtained by copolymerization of L-lactide (LA) and 2-methyl-2-benzoxycarbonyl-propylene carbonate (MBC) and subsequent catalytic hydrogenation. The pendant carboxyl groups of the copolymer MPEG-b-P(LA-co-MCC) were conjugated with antitumor drug docetaxel and tripeptide arginine-glycine-aspartic acid (RGD), respectively.
Resumo:
Novel intelligent hydrogels composed of biodegradable and pH-sensitive poly(L-glutamic acid) (PGA) and temperature sensitive poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate) (PNH) were synthesized and characterized for controlled release of hydrophilic drug. The influence of pH on the equilibrium swelling ratios of the hydrogels was investigated. A higher PNH content resulted in lower equilibrium swelling ratios. Although temperature had little influence on the swelling behaviors of the hydrogels, the changes of optical transmittance of hydrogels as a function of temperature were marked, which showed that the PNH part of hydrogel exhibited hydrophobic property at temperature above the lower critical solution temperature (LCST). The biodegradation rate of the stimuli-sensitive hydrogels in the presence of enzyme was directly proportional to the PGA content. Lysozyme was chosen as a model drug and loaded into the hydrogels.