909 resultados para ammonium oxidation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The title compound, NH(4) +center dot C(6)H(10)NS(2) -, is composed of an ammonium cation and a piperidine-1-carbodithioate anion which exhibits positional disorder. The atoms of the ring have a structural disorder and they are divided into two sites, with occupancy factors of 0.584 and 0.426.. In the crystal, the cation and anion are linked by N-H...S hydrogen bonds to form an infinite two-dimensional network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the preparation of a Pt-Rh alloy surface electrodeposited on Pt electrodes and its electrocatalytic characterization for methanol oxidation. The X-ray photoelectronic spectroscopy ( XPS) results demonstrate that the surface composition is approximately 24 at-% Rh and 76 % Pt. The cyclic voltammetry (CV) and electrochemical quartz crystal (EQCN) results for the alloy were associated, for platinum, to the well known profile in acidic medium. For Rh, on the alloy, the generation of rhodium hydroxide species (Rh(OH)(3) and RhO(OH)(3)) was measured. During the successive oxidation-reduction cycles the mass returns to its original value, indicating the reversibility of the processes. It was not observed rhodium dissolution during the cycling. The 76/24 at % Pt-Rh alloy presented singular electrocatalytic activity for methanol electrooxidation, which started at more negative potentials compared to pure Pt (70 mV). During the sweep towards more negative potentials, there is only weak CO re-adsorption on both Rh and Pt-Rh alloy surfaces, which can be explained by considering the interaction energy between Rh and CO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study on the possible sites of oxidation and epoxidation of nortriptyline was performed using electrochemical and quantum chemical methods; these sites are involved in the biological responses (for example, hepatotoxicity) of nortriptyline and other similar antidepressants. Quantum chemical studies and electrochemical experiments demonstrated that the oxidation and epoxidation sites are located on the apolar region of nortriptyline, which will useful for understanding the molecule`s activity. Also, for the determination of the compound in biological fluids or in pharmaceutical formulations, we propose a useful analytical methodology using a graphite-polyurethane composite electrode, which exhibited the best performance when compared with boron-doped diamond or glassy carbon surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim. It has been demonstrated that branched-chain amino acids (BCAA) transaminase activation occurs simultaneously with exercise-induced muscle glycogen reduction, suggesting that BCAA supplementation might play an energetic role in this condition. This study aimed to test whether BCAA supplementation enhances exercise capacity and lipid oxidation in glycogen-depleted subjects. Methods. Using a double-blind cross-over design, volunteers (N.=7) were randomly assigned to either the BCAA (300 mg . kg . day (-1)) or the placebo (maltodextrine) for 3 days. On the second day, subjects were submitted to an exercise-induced glycogen depletion protocol. They then performed an exhaustive exercise test on the third day, after which time to exhaustion, respiratory exchange ratio (RER), plasma glucose, free fatty acids (HA), blood ketones and lactate were determined. BCAA supplementation promoted a greater resistance to fatigue when compared to the placebo (+17.2%). Moreover, subjects supplemented with BCAA showed reduced RER and higher plasma glucose levels during the exhaustive exercise test. Results. No significant differences appeared in FFA, blood ketones and lactate concentrations. Conclusion. In conclusion, BCAA supplementation increases resistance to fatigue and enhances lipid oxidation during exercise in glycogen-depleted subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, SiC ceramics were liquid phase sintered (LPS), using AIN-Y(2)O(3) as additives, and oxidized at 1400 degrees C in air for up to 120 h. Oxidation was monitored by the weight gain of the samples as function of exposition time and temperature. A parabolic growth of the oxidation layer has been observed and the coefficient of the growth rate has been determined by relating the weight gain and the surface area. The effect of oxidation on strength has been determined by 4-point bending tests. Phase analysis by Xray diffraction and microstructural observation by scanning electron microscopy indicated the formation of a uniform and dense oxidation layer. The elimination of surface flaws and pores and the generation of compressive stresses in the surface resulted in a strength increase of the oxidized samples. (C) 2009 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polyurethane packed-bed-biofilm sequential batch reactor was fed with synthetic substrate simulating the composition of UASB reactor effluents. Two distinct ammonia nitrogen concentrations (125 and 250 mg l(-1)) were supplied during two sequential long-term experiments of 160 days each (320 total). Cycles of 24 h under intermittent aeration for periods of 1 h were applied, and ethanol was added as a carbon source at the beginning of each anoxic period. Nitrite was the main oxidized nitrogen compound which accumulated only during the aerated phases of the batch cycle. A consistent decrease of nitrite concentration started always immediately after the interruption of oxygen supply and addition of the electron donor. Removal to below detection limits of all nitrogen soluble forms was always observed at the end of the 24 h cycles for both initial concentrations. Polyurethane packed-bed matrices and ethanol amendments conferred high process stability. Microbial investigation by cloning suggested that nitrification was carried out by Nitrosomonas-like species whereas denitrification was mediated by unclassified species commonly observed in denitrifying environments. The packed-bed batch bioreactor favored the simultaneous colonization of distinct microbial groups within the immobilized microbial biomass. The biofilm was capable of actively oxidizing ammonium and denitrification at high ratios in intermittent intervals within 24 h cycles. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of ozone oxidation on removing high molecular weight (HMW) organics in order to improve the biodegradability of alkaline bleach plant effluent was investigated using a semi-batch reactor under different initial pH (12 and 7). After the ozonation process, the ratio of BOD5/COD increased from 0.07 to 0.16 and 0.22 for initial pH 12 and 7, respectively. Also, the effluent color decreased by 48% and 61% at initial pH 12 and pH 7, respectively. These changes were primarily driven by reductions of the HMW fractions of the effluent during ozonation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The internal stresses and crystallographic texture in alpha-Al(2)O(3) scales grown on iron aluminides at 1100 degrees C were determined in situ using synchrotron X-ray diffraction. In the first hour of oxidation, alpha-Al(2)O(3) was formed by direct nucleation and by conversion from transition oxides (either theta-Al(2)O(3) or a mixed Fe-Al oxide). A sharp texture develops connected with the direct nucleation of alpha-Al(2)O(3), in contrast to the weaker texture observed in alpha-Al(2)O(3) originated by previous transformations, which also yielded tensile stresses in early oxidation stages. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, intermetallic alloys Fe-Si and Fe-Al (Fe(3)Si-C-Cr and Fe(3)Al-C), produced by induction melting, were evaluated regarding their oxidation and abrasive resistance. The tests performed were quasi-isothermal oxidation, cyclic oxidation, and dry sand/rubber wheel abrasion. As reference, the ASTM A297-HH grade stainless steel was tested in the same conditions. In the oxidation tests, the Fe-Al based alloy presented the lowest oxidation rate, and the Fe-Si based alloy achieved the best results in the abrasion test, showing better performance than the HH type stainless steel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid latices of poly(styrene-co-butyl acrylate) were synthesized via in situ miniemulsion polymerization in the presence of 3 and 6 wt % organically modified montmorillonite (OMMT). Three different ammonium salts: cetyl trimethyl ammonium chloride (CTAC), alkyl dimethyl benzyl ammonium chloride (Dodigen), and distearyl dimethyl ammonium chloride (Praepagen), were investigated as organic modifiers. Increased affinity for organic liquids was observed after organic modification of the MMT. Stable hybrid latices were obtained even though miniemulsion stability was disturbed to some extent by the presence of the OMMTs during the synthesis. Highly intercalated and exfoliated polymer-MMT nanocomposites films were produced with good MMT dispersion throughout the polymeric matrix. Materials containing MMT modified with the 16 carbons alkyl chain salt (CTAC) resulted in the largest increments of storage modulus, indicating that single chain quaternary salts provide higher increments on mechanical properties. Films presenting exfoliated structure resulted in the largest increments in the onset temperature of decomposition. For the range of OMMT loading studied, the nanocomposite structure influenced more significantly the thermal stability properties of the hybrid material than did the OMMT loading. The film containing 3 wt % MMT modified with the two 18 carbons alkyl chains salt (Praepagen) provided the highest increment of onset temperature of decomposition. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 119: 3658-3669, 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The use of the volatile salt ammonium carbamate in protein downstream processing has recently been proposed. The main advantage of using volatile salts is that they can be removed from precipitates and liquid effluents through pressure reduction or temperature increase. Although previous studies showed that ammonium carbamate is efficient as a precipitant agent, there was evidence of denaturation in some enzymes. In this work, the effect of ammonium carbamate on the stability of five enzymes was evaluated. RESULTS: Activity assays showed that alpha-amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1), lysozyme (1,4-beta-N-acetylmuramoylhydrolase, EC 3.2.1.17) and lipase (triacyl glycerol acyl hydrolase, EC 3.1.1.3) did not undergo activity loss in ammonium carbamate solutions with concentrations from 1.0 to 5.0 mol kg(-1), whereas cellulase complex (1,4-(1,3 : 14)-beta-D-glucan 4-glucano-hydrolase, EC 3.2.1.4) and peroxidase (hydrogen peroxide oxidoreductase, EC 1.11.1.7) showed an average activity loss of 55% and 44%, respectively. Precipitation assays did not show enzyme denaturation or phase separation for alpha-amylase and lipase, while celullase and peroxidase precipitated with some activity reduction. Analysis of similar experiments with ammonium and sodium sulfate did not affect the activity of enzymes. CONCLUSION: Celullase and peroxidase were denatured by ammonium carbamate. While more systematic studies are not available, care must be taken in designing a protein precipitation with this salt. The results suggest that the generally accepted idea that salts that denature proteins tend to solubilize them does not hold for ammonium carbamate. (C) 2010 Society of Chemical Industry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lysozyme precipitation induced by the addition of the volatile salt ammonium carbamate was studied through cloud-point measurements and precipitation assays. Phase equilibrium experiments were carried out at 5.0, 15.0 and 25.0 degrees C and the compositions of the coexisting phases were determined. A complete separation of the coexisting liquid and solid phases could not be achieved. Nevertheless it was possible to determine the composition of the solid precipitate through the extensions of experimental tie lines. The same precipitate was found at all temperatures. Lysozyme enzymatic activities of the supernatant and precipitate phases were also determined. The activity balance suggests that ammonium carbamate preserves lysozyme activity after the salting-out precipitation. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims to study the adsorption of phenol on activated carbons (ACs) and the consecutive in situ regeneration of carbon by Fenton oxidation. Two different operations have been carried Out: (1) a batch procedure in order to investigate the influence of Fe(2+) and H(2)O(2) concentrations; (2) continuous fixed bed adsorption, followed by a batch circulation of the Fenton`s reagent through the saturated AC bed. to examine the efficiency of the real process. Two different activated carbons have been also studied: a both micro- and mesoporous AC (L27) and an only microporous One (S23). In the batch reactor the best conditions found for pollutant mineralization in the homogeneous Fenton system are not the best For AC regeneration: a continuous reduction of adsorption capacity of L27 is observed after 3 oxidations, due to the decrease of both AC weight and surface area. Higher concentration of Fe(2+) and lower concentration of H(2)O(2) (2 times the stoichiometry) lead to a 50% recovery of the initial adsorption capacity during at least four consecutive cycles for L27, while about 20% or less for S23. In the consecutive continuous adsorption/batch Fenton oxidation process, the regeneration efficiency reaches 30-40% for L27 after two cycles whatever the feed concentration and less than 10% for S23. A photo-Fenton test performed on L27 shows almost complete mineralization (contrary to ""dark"" Fenton) and further improves recovery of AC adsorption capacity although not complete (56% after two cycles).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium oxide (TiO(2)) has been extensively applied in the medical area due to its proved biocompatibility with human cells [1]. This work presents the characterization of titanium oxide thin films as a potential dielectric to be applied in ion sensitive field-effect transistors. The films were obtained by rapid thermal oxidation and annealing (at 300, 600, 960 and 1200 degrees C) of thin titanium films of different thicknesses (5 nm, 10 nm and 20 nm) deposited by e-beam evaporation on silicon wafers. These films were analyzed as-deposited and after annealing in forming gas for 25 min by Ellipsometry, Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy (RAMAN), Atomic Force Microscopy (AFM), Rutherford Backscattering Spectroscopy (RBS) and Ti-K edge X-ray Absorption Near Edge Structure (XANES). Thin film thickness, roughness, surface grain sizes, refractive indexes and oxygen concentration depend on the oxidation and annealing temperature. Structural characterization showed mainly presence of the crystalline rutile phase, however, other oxides such Ti(2)O(3), an interfacial SiO(2) layer between the dielectric and the substrate and the anatase crystalline phase of TiO(2) films were also identified. Electrical characteristics were obtained by means of I-V and C-V measured curves of Al/Si/TiO(x)/Al capacitors. These curves showed that the films had high dielectric constants between 12 and 33, interface charge density of about 10(10)/cm(2) and leakage current density between 1 and 10(-4) A/cm(2). Field-effect transistors were fabricated in order to analyze I(D) x V(DS) and log I(D) x Bias curves. Early voltage value of -1629 V, R(OUT) value of 215 M Omega and slope of 100 mV/dec were determined for the 20 nm TiO(x) film thermally treated at 960 degrees C. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urea and ammonium sulfate are principal nitrogen (N) sources for crop production. Two field experiments were conducted during three consecutive years to evaluate influence of urea and ammonium sulfate application on grain yield, soil pH, calcium (Ca) saturation, magnesium (Mg) saturation, base saturation, aluminum (Al) saturation, and acidity (H + Al) saturation in lowland rice production. Grain yield was significantly influenced by urea as well as ammonium sulfate fertilization. Soil pH linearly decreased with the application of N by ammonium sulfate and urea fertilizers. However, the magnitude of the pH decrease was greater by ammonium sulfate than by urea. The Ca and Mg saturations were decreased at the greater N rates compared to low rates of N by both the fertilizer sources. The Al and acidity saturation increased with increasing N rates by both the fertilizer sources. However, these acidity indices were increased more with the application of ammonium sulfate compared with urea. Rice grain yield had negative associations with pH, Ca saturation, Mg saturation, and base saturation and positive associations with Al and acidity saturation. This indicates that rice plant is tolerant to soil acidity.