950 resultados para akaike information criterion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contexte: La douleur chronique non cancéreuse (DCNC) génère des retombées économiques et sociétales importantes. L’identification des patients à risque élevé d’être de grands utilisateurs de soins de santé pourrait être d’une grande utilité; en améliorant leur prise en charge, il serait éventuellement possible de réduire leurs coûts de soins de santé. Objectif: Identifier les facteurs prédictifs bio-psycho-sociaux des grands utilisateurs de soins de santé chez les patients souffrant de DCNC et suivis en soins de première ligne. Méthodologie: Des patients souffrant d’une DCNC modérée à sévère depuis au moins six mois et bénéficiant une ordonnance valide d’un analgésique par un médecin de famille ont été recrutés dans des pharmacies communautaires du territoire du Réseau universitaire intégré de santé (RUIS), de l’Université de Montréal entre Mai 2009 et Janvier 2010. Ce dernier est composé des six régions suivantes : Mauricie et centre du Québec, Laval, Montréal, Laurentides, Lanaudière et Montérégie. Les caractéristiques bio-psycho-sociales des participants ont été documentées à l’aide d’un questionnaire écrit et d’une entrevue téléphonique au moment du recrutement. Les coûts directs de santé ont été estimés à partir des soins et des services de santé reçus au cours de l’année précédant et suivant le recrutement et identifiés à partir de la base de données de la Régie d’Assurance maladie du Québec, RAMQ (assureur publique de la province du Québec). Ces coûts incluaient ceux des hospitalisations reliées à la douleur, des visites à l’urgence, des soins ambulatoires et de la médication prescrite pour le traitement de la douleur et la gestion des effets secondaires des analgésiques. Les grands utilisateurs des soins de santé ont été définis comme étant ceux faisant partie du quartile le plus élevé de coûts directs annuels en soins de santé dans l’année suivant le recrutement. Des modèles de régression logistique multivariés et le critère d’information d’Akaike ont permis d’identifier les facteurs prédictifs des coûts directs élevés en soins de santé. Résultats: Le coût direct annuel médian en soins de santé chez les grands utilisateurs de soins de santé (63 patients) était de 7 627 CAD et de 1 554 CAD pour les utilisateurs réguliers (188 patients). Le modèle prédictif final du risque d’être un grand utilisateur de soins de santé incluait la douleur localisée au niveau des membres inférieurs (OR = 3,03; 95% CI: 1,20 - 7,65), la réduction de la capacité fonctionnelle liée à la douleur (OR = 1,24; 95% CI: 1,03 - 1,48) et les coûts directs en soins de santé dans l’année précédente (OR = 17,67; 95% CI: 7,90 - 39,48). Les variables «sexe», «comorbidité», «dépression» et «attitude envers la guérison médicale» étaient également retenues dans le modèle prédictif final. Conclusion: Les patients souffrant d’une DCNC au niveau des membres inférieurs et présentant une détérioration de la capacité fonctionnelle liée à la douleur comptent parmi ceux les plus susceptibles d’être de grands utilisateurs de soins et de services. Le coût direct en soins de santé dans l’année précédente était également un facteur prédictif important. Améliorer la prise en charge chez cette catégorie de patients pourrait influencer favorablement leur état de santé et par conséquent les coûts assumés par le système de santé.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

No estudo de séries temporais, os processos estocásticos usuais assumem que as distribuições marginais são contínuas e, em geral, não são adequados para modelar séries de contagem, pois as suas características não lineares colocam alguns problemas estatísticos, principalmente na estimação dos parâmetros. Assim, investigou-se metodologias apropriadas de análise e modelação de séries com distribuições marginais discretas. Neste contexto, Al-Osh and Alzaid (1987) e McKenzie (1988) introduziram na literatura a classe dos modelos autorregressivos com valores inteiros não negativos, os processos INAR. Estes modelos têm sido frequentemente tratados em artigos científicos ao longo das últimas décadas, pois a sua importância nas aplicações em diversas áreas do conhecimento tem despertado um grande interesse no seu estudo. Neste trabalho, após uma breve revisão sobre séries temporais e os métodos clássicos para a sua análise, apresentamos os modelos autorregressivos de valores inteiros não negativos de primeira ordem INAR (1) e a sua extensão para uma ordem p, as suas propriedades e alguns métodos de estimação dos parâmetros nomeadamente, o método de Yule-Walker, o método de Mínimos Quadrados Condicionais (MQC), o método de Máxima Verosimilhança Condicional (MVC) e o método de Quase Máxima Verosimilhança (QMV). Apresentamos também um critério automático de seleção de ordem para modelos INAR, baseado no Critério de Informação de Akaike Corrigido, AICC, um dos critérios usados para determinar a ordem em modelos autorregressivos, AR. Finalmente, apresenta-se uma aplicação da metodologia dos modelos INAR em dados reais de contagem relativos aos setores dos transportes marítimos e atividades de seguros de Cabo Verde.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of chemical control measures to reduce the impact of parasite and pest species has frequently resulted in the development of resistance. Thus, resistance management has become a key concern in human and veterinary medicine, and in agricultural production. Although it is known that factors such as gene flow between susceptible and resistant populations, drug type, application methods, and costs of resistance can affect the rate of resistance evolution, less is known about the impacts of density-dependent eco-evolutionary processes that could be altered by drug-induced mortality. The overall aim of this thesis was to take an experimental evolution approach to assess how life history traits respond to drug selection, using a free-living dioecious worm (Caenorhabditis remanei) as a model. In Chapter 2, I defined the relationship between C. remanei survival and Ivermectin dose over a range of concentrations, in order to control the intensity of selection used in the selection experiment described in Chapter 4. The dose-response data were also used to appraise curve-fitting methods, using Akaike Information Criterion (AIC) model selection to compare a series of nonlinear models. The type of model fitted to the dose response data had a significant effect on the estimates of LD50 and LD99, suggesting that failure to fit an appropriate model could give misleading estimates of resistance status. In addition, simulated data were used to establish that a potential cost of resistance could be predicted by comparing survival at the upper asymptote of dose-response curves for resistant and susceptible populations, even when differences were as low as 4%. This approach to dose-response modeling ensures that the maximum amount of useful information relating to resistance is gathered in one study. In Chapter 3, I asked how simulations could be used to inform important design choices used in selection experiments. Specifically, I focused on the effects of both within- and between-line variation on estimated power, when detecting small, medium and large effect sizes. Using mixed-effect models on simulated data, I demonstrated that commonly used designs with realistic levels of variation could be underpowered for substantial effect sizes. Thus, use of simulation-based power analysis provides an effective way to avoid under or overpowering a study designs incorporating variation due to random effects. In Chapter 4, I 3 investigated how Ivermectin dosage and changes in population density affect the rate of resistance evolution. I exposed replicate lines of C. remanei to two doses of Ivermectin (high and low) to assess relative survival of lines selected in drug-treated environments compared to untreated controls over 10 generations. Additionally, I maintained lines where mortality was imposed randomly to control for differences in density between drug treatments and to distinguish between the evolutionary consequences of drug treatment versus ecological processes affected by changes in density-dependent feedback. Intriguingly, both drug-selected and random-mortality lines showed an increase in survivorship when challenged with Ivermectin; the magnitude of this increase varied with the intensity of selection and life-history stage. The results suggest that interactions between density-dependent processes and life history may mediate evolved changes in susceptibility to control measures, which could result in misleading conclusions about the evolution of heritable resistance following drug treatment. In Chapter 5, I investigated whether the apparent changes in drug susceptibility found in Chapter 4 were related to evolved changes in life-history of C. remanei populations after selection in drug-treated and random-mortality environments. Rapid passage of lines in the drug-free environment had no effect on the measured life-history traits. In the drug-free environment, adult size and fecundity of drug-selected lines increased compared to the controls but drug selection did not affect lifespan. In the treated environment, drug-selected lines showed increased lifespan and fecundity relative to controls. Adult size of randomly culled lines responded in a similar way to drug-selected lines in the drug-free environment, but no change in fecundity or lifespan was observed in either environment. The results suggest that life histories of nematodes can respond to selection as a result of the application of control measures. Failure to take these responses into account when applying control measures could result in adverse outcomes, such as larger and more fecund parasites, as well as over-estimation of the development of genetically controlled resistance. In conclusion, my thesis shows that there may be a complex relationship between drug selection, density-dependent regulatory processes and life history of populations challenged with control measures. This relationship could have implications for how resistance is monitored and managed if life histories of parasitic species show such eco-evolutionary responses to drug application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contexte: La douleur chronique non cancéreuse (DCNC) génère des retombées économiques et sociétales importantes. L’identification des patients à risque élevé d’être de grands utilisateurs de soins de santé pourrait être d’une grande utilité; en améliorant leur prise en charge, il serait éventuellement possible de réduire leurs coûts de soins de santé. Objectif: Identifier les facteurs prédictifs bio-psycho-sociaux des grands utilisateurs de soins de santé chez les patients souffrant de DCNC et suivis en soins de première ligne. Méthodologie: Des patients souffrant d’une DCNC modérée à sévère depuis au moins six mois et bénéficiant une ordonnance valide d’un analgésique par un médecin de famille ont été recrutés dans des pharmacies communautaires du territoire du Réseau universitaire intégré de santé (RUIS), de l’Université de Montréal entre Mai 2009 et Janvier 2010. Ce dernier est composé des six régions suivantes : Mauricie et centre du Québec, Laval, Montréal, Laurentides, Lanaudière et Montérégie. Les caractéristiques bio-psycho-sociales des participants ont été documentées à l’aide d’un questionnaire écrit et d’une entrevue téléphonique au moment du recrutement. Les coûts directs de santé ont été estimés à partir des soins et des services de santé reçus au cours de l’année précédant et suivant le recrutement et identifiés à partir de la base de données de la Régie d’Assurance maladie du Québec, RAMQ (assureur publique de la province du Québec). Ces coûts incluaient ceux des hospitalisations reliées à la douleur, des visites à l’urgence, des soins ambulatoires et de la médication prescrite pour le traitement de la douleur et la gestion des effets secondaires des analgésiques. Les grands utilisateurs des soins de santé ont été définis comme étant ceux faisant partie du quartile le plus élevé de coûts directs annuels en soins de santé dans l’année suivant le recrutement. Des modèles de régression logistique multivariés et le critère d’information d’Akaike ont permis d’identifier les facteurs prédictifs des coûts directs élevés en soins de santé. Résultats: Le coût direct annuel médian en soins de santé chez les grands utilisateurs de soins de santé (63 patients) était de 7 627 CAD et de 1 554 CAD pour les utilisateurs réguliers (188 patients). Le modèle prédictif final du risque d’être un grand utilisateur de soins de santé incluait la douleur localisée au niveau des membres inférieurs (OR = 3,03; 95% CI: 1,20 - 7,65), la réduction de la capacité fonctionnelle liée à la douleur (OR = 1,24; 95% CI: 1,03 - 1,48) et les coûts directs en soins de santé dans l’année précédente (OR = 17,67; 95% CI: 7,90 - 39,48). Les variables «sexe», «comorbidité», «dépression» et «attitude envers la guérison médicale» étaient également retenues dans le modèle prédictif final. Conclusion: Les patients souffrant d’une DCNC au niveau des membres inférieurs et présentant une détérioration de la capacité fonctionnelle liée à la douleur comptent parmi ceux les plus susceptibles d’être de grands utilisateurs de soins et de services. Le coût direct en soins de santé dans l’année précédente était également un facteur prédictif important. Améliorer la prise en charge chez cette catégorie de patients pourrait influencer favorablement leur état de santé et par conséquent les coûts assumés par le système de santé.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

No estudo de séries temporais, os processos estocásticos usuais assumem que as distribuições marginais são contínuas e, em geral, não são adequados para modelar séries de contagem, pois as suas características não lineares colocam alguns problemas estatísticos, principalmente na estimação dos parâmetros. Assim, investigou-se metodologias apropriadas de análise e modelação de séries com distribuições marginais discretas. Neste contexto, Al-Osh and Alzaid (1987) e McKenzie (1988) introduziram na literatura a classe dos modelos autorregressivos com valores inteiros não negativos, os processos INAR. Estes modelos têm sido frequentemente tratados em artigos científicos ao longo das últimas décadas, pois a sua importância nas aplicações em diversas áreas do conhecimento tem despertado um grande interesse no seu estudo. Neste trabalho, após uma breve revisão sobre séries temporais e os métodos clássicos para a sua análise, apresentamos os modelos autorregressivos de valores inteiros não negativos de primeira ordem INAR (1) e a sua extensão para uma ordem p, as suas propriedades e alguns métodos de estimação dos parâmetros nomeadamente, o método de Yule-Walker, o método de Mínimos Quadrados Condicionais (MQC), o método de Máxima Verosimilhança Condicional (MVC) e o método de Quase Máxima Verosimilhança (QMV). Apresentamos também um critério automático de seleção de ordem para modelos INAR, baseado no Critério de Informação de Akaike Corrigido, AICC, um dos critérios usados para determinar a ordem em modelos autorregressivos, AR. Finalmente, apresenta-se uma aplicação da metodologia dos modelos INAR em dados reais de contagem relativos aos setores dos transportes marítimos e atividades de seguros de Cabo Verde.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the rapid changes that governs the Swedish financial sector such as financial deregulations and technological innovations, it is imperative to examine the extent to which the Swedish Financial institutions had performed amid these changes. For this to be accomplish, the work investigates what are the determinants of performance for Swedish Financial Monetary Institutions? Assumptions were derived from theoretical and empirical literatures to investigate the authenticity of this research question using seven explanatory variables. Two models were specified using Returns on Asset (ROA) and Return on Equity (ROE) as the main performance indicators and for the sake of reliability and validity, three different estimators such as Ordinary Least Square (OLS), Generalized Least Square (GLS) and Feasible Generalized Least Square (FGLS) were employed. The Akaike Information Criterion (AIC) was also used to verify which specification explains performance better while performing robustness check of parameter estimates was done by correcting for standard errors. Based on the findings, ROA specification proves to have the lowest Akaike Information Criterion (AIC) and Standard errors compared to ROE specification. Under ROA, two variables; the profit margins and the Interest coverage ratio proves to be statistically significant while under ROE just the interest coverage ratio (ICR) for all the estimators proves significant. The result also shows that the FGLS is the most efficient estimator, then follows the GLS and the last OLS. when corrected for SE robust, the gearing ratio which measures the capital structure becomes significant under ROA and its estimate become positive under ROE robust. Conclusions were drawn that, within the period of study three variables (ICR, profit margins and gearing) shows significant and four variables were insignificant. The overall findings show that the institutions strive to their best to maximize returns but these returns were just normal to cover their costs of operation. Much should be done as per the ASC theory to avoid liquidity and credit risks problems. Again, estimated values of ICR and profit margins shows that a considerable amount of efforts with sound financial policies are required to increase performance by one percentage point. Areas of further research could be how the individual stochastic factors such as the Dupont model, repo rates, inflation, GDP etc. can influence performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main purpose of this study is to assess the relationship between six bioclimatic indices for cattle (temperature humidity (THI), environmental stress (ESI), equivalent temperature (ESI), heat load (HLI), modified heat load (HLInew) and respiratory rate predictor(RRP)) and fundamental milk components (fat, protein, and milk yield) considering uncertainty. The climate parameters used to calculate the climate indices were taken from the NASA-Modern Era Retrospective-Analysis for Research and Applications (NASA-MERRA) reanalysis from 2002 to 2010. Cow milk data were considered for the same period from April to September when cows use natural pasture, with possibility for cows to choose to stay in the barn or to graze on the pasture in the pasturing system. The study is based on a linear regression analysis using correlations as a summarizing diagnostic. Bootstrapping is used to represent uncertainty estimation through resampling in the confidence intervals. To find the relationships between climate indices (THI, ETI, HLI, HLInew, ESI and RRP) and main components of cow milk (fat, protein and yield), multiple liner regression is applied. The least absolute shrinkage selection operator (LASSO) and the Akaike information criterion (AIC) techniques are applied to select the best model for milk predictands with the smallest number of climate predictors. Cross validation is used to avoid over-fitting. Based on results of investigation the effect of heat stress indices on milk compounds separately, we suggest the use of ESI and RRP in the summer and ESI in the spring. THI and HLInew are suggested for fat content and HLInew also is suggested for protein content in the spring season. The best linear models are found in spring between milk yield as predictands and THI, ESI,HLI, ETI and RRP as predictors with p-value < 0.001 and R2 0.50, 0.49. In summer, milk yield with independent variables of THI, ETI and ESI show the highest relation (p-value < 0.001) with R2 (0.69). For fat and protein the results are only marginal. It is strongly suggested that new and significant indices are needed to control critical heat stress conditions that consider more predictors of the effect of climate variability on animal products, such as sunshine duration, quality of pasture, the number of days of stress (NDS), the color of skin with attention to large black spots, and categorical predictors such as breed, welfare facility, and management system. This methodology is suggested for studies investigating the impacts of climate variability/change on food quality/security, animal science and agriculture using short term data considering uncertainty or data collection is expensive, difficult, or data with gaps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bigeye thresher, Alopias supercilious, is commonly caught as bycatch in pelagic longline fisheries targeting swordfish. Little information is yet available on the biology of this species, however. As part of an ongoing study, observers sent aboard fishing vessels have been collecting set of information that includes samples of vertebrae, with the aim of investigating age and growth of A. supercilious. A total of 117 specimens were sampled between September 2008 and October 2009 in the tropical northeastern Atlantic, with specimens ranging from 101 to 242 cm fork length (FL) (176 to 407 cm total length). The A. supercilious vertebrae were generally difficult to read, mainly because they were poorly calcified, which is typical of Lamniformes sharks. Preliminary trials were carried out to determine the most efficient band enhancement technique for this species, in which crystal violet section staining was found to be the best methodology. Estimated ages in this sample ranged from 2 to 22 years for females and 1 to 17 years for males. A version of the von Bertalanffy growth model (VBGF) re-parameterised to estimate L(0), and a modified VBGF using a fixed L(0) were fitted to the data. The Akaike information criterion (AIC) was used to compare these models. The VBGF produced the best results, with the following parameters: L(inf) = 293 cm FL, k = 0.06 y(-1) and L(0) = 111 cm FL for females; L(inf) = 206 cm FL, k = 0.18 y(-1) and L(0) = 93 cm FL for males. The estimated growth coefficients confirm that A. supercilious is a slow-growing species, highlighting its vulnerability to fishing pressure. It is therefore urgent to carry out more biological research to inform fishery managers more adequately and address conservation issues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The smooth hammerhead shark Sphyrna zygaena (Sphyrnidae) is regularly caught as bycatch in pelagic longline fisheries, but is one of the least studied of all pelagic sharks. Recently, ICCAT (International Commission for the Conservation of Atlantic Tunas) issued recommendations underlining the need for more studies on the life history parameters of this and other pelagic shark species. To this end, the age and growth of S. zygaena were studied in the Eastern Equatorial Atlantic Ocean, in an area where growth parameters were not yet available for this species. Data from 139 specimens, caught between June and September 2009, ranging in size from 136 to 233 cm fork length (FL), were analysed. Preliminary trials were carried out to assess the most efficient growth band enhancement technique. These indicated that sectioning the vertebrae into 500 μm sections followed by staining with crystal violet produced the best results. Growth models were fitted using the traditional von Bertalanffy growth equation and a modification of this equation using a known size at birth. Growth models were compared using the Akaike information criterion (AIC). The von Bertalanffy growth equation seemed to be the most adequate model to describe growth in this species, with resulting growth parameters of L inf = 272 cm FL, k = 0.06 year for males and L inf = 285 cm FL, k = 0.07 year for females. In the first four years of life, S. zygaena grows 25 cm per year on average, but its growth slows down in later life. Future stock assessment models should incorporate these age and growth parameters for species management and conservation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The traditional searching method for model-order selection in linear regression is a nested full-parameters-set searching procedure over the desired orders, which we call full-model order selection. On the other hand, a method for model-selection searches for the best sub-model within each order. In this paper, we propose using the model-selection searching method for model-order selection, which we call partial-model order selection. We show by simulations that the proposed searching method gives better accuracies than the traditional one, especially for low signal-to-noise ratios over a wide range of model-order selection criteria (both information theoretic based and bootstrap-based). Also, we show that for some models the performance of the bootstrap-based criterion improves significantly by using the proposed partial-model selection searching method. Index Terms— Model order estimation, model selection, information theoretic criteria, bootstrap 1. INTRODUCTION Several model-order selection criteria can be applied to find the optimal order. Some of the more commonly used information theoretic-based procedures include Akaike’s information criterion (AIC) [1], corrected Akaike (AICc) [2], minimum description length (MDL) [3], normalized maximum likelihood (NML) [4], Hannan-Quinn criterion (HQC) [5], conditional model-order estimation (CME) [6], and the efficient detection criterion (EDC) [7]. From a practical point of view, it is difficult to decide which model order selection criterion to use. Many of them perform reasonably well when the signal-to-noise ratio (SNR) is high. The discrepancies in their performance, however, become more evident when the SNR is low. In those situations, the performance of the given technique is not only determined by the model structure (say a polynomial trend versus a Fourier series) but, more importantly, by the relative values of the parameters within the model. This makes the comparison between the model-order selection algorithms difficult as within the same model with a given order one could find an example for which one of the methods performs favourably well or fails [6, 8]. Our aim is to improve the performance of the model order selection criteria in cases where the SNR is low by considering a model-selection searching procedure that takes into account not only the full-model order search but also a partial model order search within the given model order. Understandably, the improvement in the performance of the model order estimation is at the expense of additional computational complexity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: The relationship between temperature and mortality has been explored for decades and many temperature indicators have been applied separately. However, few data are available to show how the effects of different temperature indicators on different mortality categories, particularly in a typical subtropical climate. OBJECTIVE: To assess the associations between various temperature indicators and different mortality categories in Brisbane, Australia during 1996-2004. METHODS: We applied two methods to assess the threshold and temperature indicator for each age and death groups: mean temperature and the threshold assessed from all cause mortality was used for all mortality categories; the specific temperature indicator and the threshold for each mortality category were identified separately according to the minimisation of AIC. We conducted polynomial distributed lag non-linear model to identify effect estimates in mortality with one degree of temperature increase (or decrease) above (or below) the threshold on current days and lagged effects using both methods. RESULTS: Akaike's Information Criterion was minimized when mean temperature was used for all non-external deaths and deaths from 75 to 84 years; when minimum temperature was used for deaths from 0 to 64 years, 65-74 years, ≥ 85 years, and from the respiratory diseases; when maximum temperature was used for deaths from cardiovascular diseases. The effect estimates using certain temperature indicators were similar as mean temperature both for current day and lag effects. CONCLUSION: Different age groups and death categories were sensitive to different temperature indicators. However, the effect estimates from certain temperature indicators did not significantly differ from those of mean temperature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A simple, non-iterative method for component wave delineation from the electrocardiogram (ECG) is derived by modelling its discrete cosine transform (DCT) as a sum of damped cosinusoids. Amplitude, phase, damping factor and frequency parameters of each of the cosinusoids are estimated by the extended Prony method. Different component waves are represented by non-overlapping clusters of model poles in the z plane and thus a component wave is derived by the addition of the inverse transformed (IDCT) impulse responses of the poles in the cluster. Akaike's information criterion (AIC) is used to determine the model order. The method performed satisfactory even in the presence of artifacts. The efficacy of the method is illustrated by analysis of continuous strips of ECG data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wydział Chemii: Zakład Chemii Fizycznej

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Logit-Logistic (LL), Johnson's SB, and the Beta (GBD) are flexible four-parameter probability distribution models in terms of the (skewness-kurtosis) region covered, and each has been used for modeling tree diameter distributions in forest stands. This article compares bivariate forms of these models in terms of their adequacy in representing empirical diameter-height distributions from 102 sample plots. Four bivariate models are compared: SBB, the natural, well-known, and much-used bivariate generalization of SB; the bivariate distributions with LL, SB, and Beta as marginals, constructed using Plackett's method (LL-2P, etc.). All models are fitted using maximum likelihood, and their goodness-of-fits are compared using minus log-likelihood (equivalent to Akaike's Information Criterion, the AIC). The performance ranking in this case study was SBB, LL-2P, GBD-2P, and SB-2P

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The problem of model selection of a univariate long memory time series is investigated once a semi parametric estimator for the long memory parameter has been used. Standard information criteria are not consistent in this case. A Modified Information Criterion (MIC) that overcomes these difficulties is introduced and proofs that show its asymptotic validity are provided. The results are general and cover a wide range of short memory processes. Simulation evidence compares the new and existing methodologies and empirical applications in monthly inflation and daily realized volatility are presented.