861 resultados para advanced glycation end_products
Resumo:
Aims/hypothesis
The receptor for AGEs (RAGE) is linked to proinflammatory pathology in a range of tissues. The objective of this study was to assess the potential modulatory role of RAGE in diabetic retinopathy.
Methods
Diabetes was induced in wild-type (WT) and Rage −/− mice (also known as Ager −/− mice) using streptozotocin while non-diabetic control mice received saline. For all groups, blood glucose, HbA1c and retinal levels of methylglyoxal (MG) were evaluated up to 24 weeks post diabetes induction. After mice were killed, retinal glia and microglial activation, vasopermeability, leucostasis and degenerative microvasculature changes were determined.
Results
Retinal expression of RAGE in WT diabetic mice was increased after 12 weeks (p < 0.01) but not after 24 weeks. Rage −/− mice showed comparable diabetes but accumulated less MG and this corresponded to enhanced activity of the MG-detoxifying enzyme glyoxalase I in their retina when compared with WT mice. Diabetic Rage −/− mice showed significantly less vasopermeability, leucostasis and microglial activation (p < 0.05–0.001). Rage −/− mice were also protected against diabetes-related retinal acellular capillary formation (p < 0.001) but not against pericyte loss.
Conclusions/interpretation Rage −/− in diabetic mice is protective against many retinopathic lesions, especially those related to innate immune responses. Inhibition of RAGE could be a therapeutic option to prevent diabetic retinopathy.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: The majority of studies have investigated the effect of exercise training (TR) on vascular responses in diabetic animals (DB), but none evaluated nitric oxide (NO) and advanced glycation end products (AGEs) formation associated with oxidant and antioxidant activities in femoral and coronary arteries from trained diabetic rats. Our hypothesis was that 8-week TR would alter AGEs levels in type 1 diabetic rats ameliorating vascular responsiveness. Methodology/Principal Findings: Male Wistar rats were divided into control sedentary (C/SD), sedentary diabetic (SD/DB), and trained diabetic (TR/DB). DB was induced by streptozotocin (i.p.: 60 mg/kg). TR was performed for 60 min per day, 5 days/week, during 8 weeks. Concentration-response curves to acetylcholine (ACh), sodium nitroprusside (SNP), phenylephrine (PHE) and tromboxane analog (U46619) were obtained. The protein expressions of eNOS, receptor for AGEs (RAGE), Cu/Zn-SOD and Mn-SOD were analyzed. Tissues NO production and reactive oxygen species (ROS) generation were evaluated. Plasma nitrate/nitrite (NOx-), superoxide dismutase (SOD), catalase (CAT), thiobarbituric acid reactive substances (TBARS) and N-epsilon-(carboxymethyl) lysine (CML, AGE biomarker). A rightward shift in the concentration-response curves to ACh was observed in femoral and coronary arteries from SD/DB that was accompanied by an increase in TBARS and CML levels. Decreased in the eNOS expression, tissues NO production and NOx- levels were associated with increased ROS generation. A positive interaction between the beneficial effect of TR on the relaxing responses to ACh and the reduction in TBARS and CML levels were observed without changing in antioxidant activities. The eNOS protein expression, tissues NO production and ROS generation were fully re-established in TR/DB, but plasma NOx- levels were partially restored. Conclusion: Shear stress induced by TR fully restores the eNOS/NO pathway in both preparations from non-treated diabetic rats, however, a massive production of AGEs still affecting relaxing responses possibly involving other endothelium-dependent vasodilator agents, mainly in coronary artery.
Resumo:
Abstract Background Advanced glycation end products (AGE) alter lipid metabolism and reduce the macrophage expression of ABCA-1 and ABCG-1 which impairs the reverse cholesterol transport, a system that drives cholesterol from arterial wall macrophages to the liver, allowing its excretion into the bile and feces. Oxysterols favors lipid homeostasis in macrophages and drive the reverse cholesterol transport, although the accumulation of 7-ketocholesterol, 7alpha- hydroxycholesterol and 7beta- hydroxycholesterol is related to atherogenesis and cell death. We evaluated the effect of glycolaldehyde treatment (GAD; oxoaldehyde that induces a fast formation of intracellular AGE) in macrophages overloaded with oxidized LDL and incubated with HDL alone or HDL plus LXR agonist (T0901317) in: 1) the intracellular content of oxysterols and total sterols and 2) the contents of ABCA-1 and ABCG-1. Methods Total cholesterol and oxysterol subspecies were determined by gas chromatography/mass spectrometry and HDL receptors content by immunoblot. Results In control macrophages (C), incubation with HDL or HDL + T0901317 reduced the intracellular content of total sterols (total cholesterol + oxysterols), cholesterol and 7-ketocholesterol, which was not observed in GAD macrophages. In all experimental conditions no changes were found in the intracellular content of other oxysterol subspecies comparing C and GAD macrophages. GAD macrophages presented a 45% reduction in ABCA-1 protein level as compared to C cells, even after the addition of HDL or HDL + T0901317. The content of ABCG-1 was 36.6% reduced in GAD macrophages in the presence of HDL as compared to C macrophages. Conclusion In macrophages overloaded with oxidized LDL, glycolaldehyde treatment reduces the HDL-mediated cholesterol and 7-ketocholesterol efflux which is ascribed to the reduction in ABCA-1 and ABCG-1 protein level. This may contribute to atherosclerosis in diabetes mellitus.
Resumo:
RAGE mediates diverse physiological and pathological effects by binding a variety of ligands. Despite incomplete understanding of RAGE-mediated disorders soluble RAGE (sRAGE) has been identified as a potential biomarker for RAGE-related diseases and possibly represents a hopeful pharmaceutical against RAGE-mediated disorders. Nevertheless, the source of sRAGE remains poorly investigated. Currently sRAGE is thought to be derived exclusively from alternative splicing of mRNA. In this thesis it was investigated whether sRAGE can also be released as a result of ectodomain shedding of full-length RAGE. Using cells overexpressing RAGE as a model system, it was demonstrated clearly that RAGE undergoes ectodomain shedding in both constitutive and regulated manner. Several stimuli including PMA, AMPA, calcium and chelerythrine stimulated the release of sRAGE into cell culture medium. Moreover, possible mechanisms that regulate ectodomain shedding of RAGE were investigated and it was found that shedding of RAGE is likely independent from PKC and MAPK pathways. By using gain of function and loss of function approaches MMP9 but not ADAM10, ADAM17 or MT1-MMP was characterized as the metalloproteinase that mediates shedding of RAGE. Furthermore, it was shown that cytoplasmic domain of RAGE is not essential for shedding of RAGE. In addition, the potential cleavage site of RAGE by MMP9 was investigated and a lack of sequence specificity for the RAGE processing proteinase was demonstrated by mutation analysis. Finally the physiopathological significance of shedding of RAGE is discussed. In conclusion, for the first time ectodomain shedding of human RAGE and the underlying regulatory mechanisms were investigated. The data open a new field for modulation of RAGE shedding as a novel intervention approach against RAGE-mediated diseases.
Resumo:
Zu den Liganden des Zelloberflächenrezeptors RAGE gehören AGEs, S100-Proteine, HMGB1 und Aβ. RAGE wird daher eine Rolle bei verschiedenen neurologischen Erkrankungen sowie Diabetes, Arteriosklerose und Krebs zugesprochen. Des Weiteren geht eine Verringerung der Menge an sRAGE häufig mit diesen Krankheiten einher. Aus diesen Gründen stellt die pharmakologische Stimulierung der Proteolyse von RAGE eine vielversprechende Therapieform dar. Im Rahmen dieser Arbeit konnte gezeigt werden, dass eine Steigerung der sRAGE-Bildung über PAC1-, V2- und OT-Rezeptoren möglich ist. Die Untersuchung der PAC1-Signalwege zeigte, dass PKCα/PKCβI, CaMKII, Ca2+-Ionen, PI3-Kinase und der MAP-Kinase-Weg wichtig für die Stimulierung sind und dass der PKA-Weg nicht beteiligt ist. Die dreimonatige Behandlung von Mäusen mit PACAP-38 weist darauf hin, dass eine Stimulierung des Ectodomain Sheddings von RAGE auch in vivo erfolgen kann. Die Untersuchung der Signalwege, ausgehend von den V2- und OT-Rezeptoren, zeigte, dass ebenfalls PKCα/PKCβI, CaMKII, Ca2+-Ionen zur Aktivierung der Proteasen führen, dagegen konnte weder ein Einfluss des PKA- noch des MAP-Kinase-Weges festgestellt werden. Außerdem wurden sowohl MMP-9 als auch ADAM-10 als RAGE-spaltende Proteasen identifiziert. Die nähere Untersuchung der RAGE-Spaltstelle erbrachte, dass keine spezifische Sequenz, sondern vielmehr die Sekundärstruktur eine Rolle bei der Erkennung durch die Proteasen spielt. Im Rahmen der vorliegenden Arbeit wurde weiterhin ein anti-RAGE Antikörper anhand einer neu entwickelten Methode zunächst gereinigt und dann erfolgreich an ein mit dem Fluoreszenzfarbstoff Rhodamin markiertes Polymer gekoppelt. Die Stimulierung der Proteolyse von Meprin β wurde auch untersucht und es konnte ebenfalls eine Beteiligung von ADAM-10 an der Spaltung nachgewiesen werden.
Resumo:
Advanced glycation end products (AGEs) may play a role in the pathogenesis of diabetic nephropathy, by modulating extracellular matrix turnover. AGEs are known to activate specific membrane receptors, including the receptor for AGE (RAGE). In the present study, we analyzed the various receptors for AGEs expressed by human mesangial cells and we studied the effects of glycated albumin and of carboxymethyl lysine on matrix protein and remodelling enzyme synthesis. Membrane RAGE expression was confirmed by FACS analysis. Microarray methods, RT-PCR, and Northern blot analysis were used to detect and confirm specific gene induction. Zymographic analysis and ELISA were used to measure the induction of tPA and PAI-1. We show herein that cultured human mesangial cells express AGE receptor type 1, type 2 and type 3 and RAGE. AGEs (200 microg/ml) induced at least a 2-fold increase in mRNA for 10 genes involved in ECM remodelling, including tPA, PAI-1 and TIMP-3. The increase in tPA synthesis was confirmed by fibrin zymography. The stimulation of PAI-1 synthesis was confirmed by ELISA. AGEs increased PAI-1 mRNA through a signalling pathway involving reactive oxygen species, the MAP kinases ERK-1/ERK-2 and the nuclear transcription factor NF-kappaB, but not AP-1. Carboxymethyl lysine (CML, 5 microM), which is a RAGE ligand, also stimulated PAI-1 synthesis by mesangial cells. In addition, a blocking anti-RAGE antibody partially inhibited the AGE-stimulated gene expression and decreased the PAI-1 accumulation induced by AGEs and by CML. Inhibition of AGE receptors or neutralization of the protease inhibitors TIMP-3 and PAI-1 could represent an important new therapeutic strategy for diabetic nephropathy.
Resumo:
Inflammatory bowel disease (IBD) is a common condition in dogs, and a dysregulated innate immunity is believed to play a major role in its pathogenesis. S100A12 is an endogenous damage-associated molecular pattern molecule, which is involved in phagocyte activation and is increased in serum/fecal samples from dogs with IBD. S100A12 binds to the receptor of advanced glycation end products (RAGE), a pattern-recognition receptor, and results of studies in human patients with IBD and other conditions suggest a role of RAGE in chronic inflammation. Soluble RAGE (sRAGE), a decoy receptor for inflammatory proteins (e.g., S100A12) that appears to function as an anti-inflammatory molecule, was shown to be decreased in human IBD patients. This study aimed to evaluate serum sRAGE and serum/fecal S100A12 concentrations in dogs with IBD. Serum and fecal samples were collected from 20 dogs with IBD before and after initiation of medical treatment and from 15 healthy control dogs. Serum sRAGE and serum and fecal S100A12 concentrations were measured by ELISA, and were compared between dogs with IBD and healthy controls, and between dogs with a positive outcome (i.e., clinical remission, n=13) and those that were euthanized (n=6). The relationship of serum sRAGE concentrations with clinical disease activity (using the CIBDAI scoring system), serum and fecal S100A12 concentrations, and histologic disease severity (using a 4-point semi-quantitative grading system) was tested. Serum sRAGE concentrations were significantly lower in dogs with IBD than in healthy controls (p=0.0003), but were not correlated with the severity of histologic lesions (p=0.4241), the CIBDAI score before (p=0.0967) or after treatment (p=0.1067), the serum S100A12 concentration before (p=0.9214) and after treatment (p=0.4411), or with the individual outcome (p=0.4066). Clinical remission and the change in serum sRAGE concentration after treatment were not significantly associated (p=0.5727); however, serum sRAGE concentrations increased only in IBD dogs with complete clinical remission. Also, dogs that were euthanized had significantly higher fecal S100A12 concentrations than dogs that were alive at the end of the study (p=0.0124). This study showed that serum sRAGE concentrations are decreased in dogs diagnosed with IBD compared to healthy dogs, suggesting that sRAGE/RAGE may be involved in the pathogenesis of canine IBD. Lack of correlation between sRAGE and S100A12 concentrations is consistent with sRAGE functioning as a non-specific decoy receptor. Further studies need to evaluate the gastrointestinal mucosal expression of RAGE in healthy and diseased dogs, and also the formation of S100A12-RAGE complexes.
Resumo:
INTRODUCTION Proangiogenic prolyl hydroxylase (PHD) inhibitors represent a novel approach to stimulate tissue regeneration. Diabetes mellitus involves the accumulation of advanced glycation end products (AGEs). Here we evaluated the impact of AGEs on the response of human pulp tissue to the PHD inhibitor L-mimosine (L-MIM) in monolayer cultures of dental pulp-derived cells (DPCs) and tooth slice organ cultures. METHODS In monolayer cultures, DPCs were incubated with L-MIM and AGEs. Viability was assessed based on formazan formation, live-dead staining, annexin V/propidium iodide, and trypan blue exclusion assay. Vascular endothelial growth factor (VEGF), interleukin (IL)-6, and IL-8 production was evaluated by quantitative polymerase chain reaction and immunoassays. Furthermore, expression levels of odontoblast markers were assessed, and alizarin red staining was performed. Tooth slice organ cultures were performed, and VEGF, IL-6, and IL8 levels in their supernatants were measured by immunoassays. Pulp tissue vitality and morphology were assessed by MTT assay and histology. RESULTS In monolayer cultures of DPCs, L-MIM at nontoxic concentrations increased the production of VEGF and IL-8 in the presence of AGEs. Stimulation with L-MIM decreased alkaline phosphatase levels and matrix mineralization also in the presence of AGEs, whereas no significant changes in dentin matrix protein 1 and dentin sialophosphoprotein expression were observed. In tooth slice organ cultures, L-MIM increased VEGF but not IL-6 and IL-8 production in the presence of AGEs. The pulp tissue was vital, and no signs of apoptosis or necrosis were observed. CONCLUSIONS Overall, in the presence of AGEs, L-MIM increases the proangiogenic capacity, but decreases alkaline phosphatase expression and matrix mineralization.
Resumo:
This thesis project is motivated by the potential problem of using observational data to draw inferences about a causal relationship in observational epidemiology research when controlled randomization is not applicable. Instrumental variable (IV) method is one of the statistical tools to overcome this problem. Mendelian randomization study uses genetic variants as IVs in genetic association study. In this thesis, the IV method, as well as standard logistic and linear regression models, is used to investigate the causal association between risk of pancreatic cancer and the circulating levels of soluble receptor for advanced glycation end-products (sRAGE). Higher levels of serum sRAGE were found to be associated with a lower risk of pancreatic cancer in a previous observational study (255 cases and 485 controls). However, such a novel association may be biased by unknown confounding factors. In a case-control study, we aimed to use the IV approach to confirm or refute this observation in a subset of study subjects for whom the genotyping data were available (178 cases and 177 controls). Two-stage IV method using generalized method of moments-structural mean models (GMM-SMM) was conducted and the relative risk (RR) was calculated. In the first stage analysis, we found that the single nucleotide polymorphism (SNP) rs2070600 of the receptor for advanced glycation end-products (AGER) gene meets all three general assumptions for a genetic IV in examining the causal association between sRAGE and risk of pancreatic cancer. The variant allele of SNP rs2070600 of the AGER gene was associated with lower levels of sRAGE, and it was neither associated with risk of pancreatic cancer, nor with the confounding factors. It was a potential strong IV (F statistic = 29.2). However, in the second stage analysis, the GMM-SMM model failed to converge due to non- concaveness probably because of the small sample size. Therefore, the IV analysis could not support the causality of the association between serum sRAGE levels and risk of pancreatic cancer. Nevertheless, these analyses suggest that rs2070600 was a potentially good genetic IV for testing the causality between the risk of pancreatic cancer and sRAGE levels. A larger sample size is required to conduct a credible IV analysis.^
Breakers of advanced glycation end products restore large artery properties in experimental diabetes
Resumo:
Glucose and other reducing sugars react with proteins by a nonenzymatic, posttranslational modification process called nonenzymatic glycation. The formation of advanced glycation end products (AGEs) on connective tissue and matrix components accounts largely for the increase in collagen crosslinking that accompanies normal aging and which occurs at an accelerated rate in diabetes, leading to an increase in arterial stiffness. A new class of AGE crosslink “breakers” reacts with and cleaves these covalent, AGE-derived protein crosslinks. Treatment of rats with streptozotocin-induced diabetes with the AGE-breaker ALT-711 for 1–3 weeks reversed the diabetes-induced increase of large artery stiffness as measured by systemic arterial compliance, aortic impedance, and carotid artery compliance and distensibility. These findings will have considerable implications for the treatment of patients with diabetes-related complications and aging.