963 resultados para active fiber composite


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article presents the use of fibers residue from textile industry to minimize environmental problems associated with material accumulation. Composite materials utilizing textile fiber residues and high density polyethylene were prepared. Effect of treatment with hot water on fibers to prepare composites was studied to provide an improvement in mechanical properties of these materials. This treatment on fibers was evaluated by X-ray diffraction and scanning electron microscopy techniques. Experimental results of mechanical properties indicated higher mechanical strength for treated fiber composites compared to the untreated fiber composites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

By the use of installed fibers inside the city we demonstrated a 48.8 km ultralong Erbium-doped fiber laser in modelocking regime with repetition rate varying from 1-10 GHz. The shortest pulse duration of 42 ps at 2.5 GHz was obtained by optimization of intracavity dispersion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this work is to present the finite element modeling of laminate composite plates with embedded piezoelectric patches or layers that are then connected to active-passive resonant shunt circuits, composed of resistance, inductance and voltage source. Applications to passive vibration control and active control authority enhancement are also presented and discussed. The finite element model is based on an equivalent single layer theory combined with a third-order shear deformation theory. A stress-voltage electromechanical model is considered for the piezoelectric materials fully coupled to the electrical circuits. To this end, the electrical circuit equations are also included in the variational formulation. Hence, conservation of charge and full electromechanical coupling are guaranteed. The formulation results in a coupled finite element model with mechanical (displacements) and electrical (charges at electrodes) degrees of freedom. For a Graphite-Epoxy (Carbon-Fibre Reinforced) laminate composite plate, a parametric analysis is performed to evaluate optimal locations along the plate plane (xy) and thickness (z) that maximize the effective modal electromechanical coupling coefficient. Then, the passive vibration control performance is evaluated for a network of optimally located shunted piezoelectric patches embedded in the plate, through the design of resistance and inductance values of each circuit, to reduce the vibration amplitude of the first four vibration modes. A vibration amplitude reduction of at least 10 dB for all vibration modes was observed. Then, an analysis of the control authority enhancement due to the resonant shunt circuit, when the piezoelectric patches are used as actuators, is performed. It is shown that the control authority can indeed be improved near a selected resonance even with multiple pairs of piezoelectric patches and active-passive circuits acting simultaneously. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated the fracture resistance of endodontically treated teeth restored with prefabricated carbon fiber posts and varying quantities of coronal dentin. Sixty freshly extracted upper canines were randomly divided into groups of 10 teeth each. The specimens were exposed to 250,000 cycles in a controlled chewing simulator. All intact specimens were subjected to a static load (N) in a universal testing machine at 45 degrees to the long axis. Data were analyzed by 1-way analysis of variance and Tukey test (alpha = .05). Significant differences (P < .001) were found among the mean fracture forces of the test groups (positive control, 0 mm, 1 mm, 2 mm, 3 mm, and negative control groups: 1022.82 N, 1008.22 N, 1292.52 N, 1289.19 N, 1255.38 N, and 1582.11, respectively). These results suggested that the amount of coronal dentin did not significantly increase the fracture resistance of endodontically treated teeth restored with prefabricated carbon fiber post and composite resin core. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106:e52-e57)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objectives. To test the null hypothesis that continuity of resin cement/dentin interfaces is not affected by location along the root canal walls or water storage for 3 months when bonding fiber posts into root canals. Methods. Fiber posts were luted to bovine incisors using four resinous luting systems: Multilink, Variolink II, Enforce Dual and Enforce PV. After cementation, roots were longitudinally sectioned and epoxy resin replicas were prepared for SEM analysis (baseline). The original halves were immersed in solvent, replicated and evaluated. After 3 months water storage and a second solvent immersion, a new set of replicas were made and analyzed. The ratio (%) between the length (mm) of available bonding interface and the actual extension of bonded cement/dentin interface was calculated. Results. Significant lower percent values of bond integrity were found for Multilink (8.25%) and Variolink 11 (10.08%) when compared to Enforce Dual (25.11%) and Enforce PV (27.0%) at baseline analysis. The same trend was observed after immersion in solvent, with no significant changes. However, bond integrity was significantly reduced after 3 months water storage and a second solvent immersion to values below 5% (Multilink = 3.31%, Variolink=1.87%, Enforce Dual=1.20%, and Enforce PV=0.75%). The majority of gaps were depicted at the apical and middle thirds at baseline and after immersion in solvent. After 3 months, gaps were also detected at the cervical third. Significance. Bond integrity at the cement/dentin interface was surprisingly low after cementation of fiber posts to root canals with all resin cements. That was not significantly altered after immersion in solvent, but was further compromised after 3 months water storage. Gaps were mainly seen at middle and apical thirds throughout the experiment and extended to the cervical third after water storage for 3 months. Bond integrity of fiber posts luted to root canals was affected both by location and water storage. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: To evaluate the influence of surface treatments on microtensile bond strength of luting resin cements to fiber posts. Materials and Methods: Forty-two quartz fiber posts (Light Post, RTD) were divided into 7 groups (n = 6) according to the surface treatment. I and 11: experimental patented industrial treatment consisting of zirconium oxide coating and silanization (RTD); III: industrial treatment followed by adhesive application (XPBond, Dentsply Caulk); IV: adhesive (XPBond); V: adhesive (Prime&Bond NT, Dentsply Caulk); VI: silane (Calibra Silane, Dentsply Caulk); VII: no treatment. Adhesives were used in the self-curing mode. Two cements (Sealbond, RTD - group 1, and Calibra, Dentsply Caulk - groups 11 to VII) were applied on the posts to produce cylindrical specimens. Post/cement interfaces were evaluated under SEM. The surface of the industrially coated posts was examined using energy dispersive analysis by x-ray. Cylinders were cut to obtain microtensile sticks that were loaded in tension at a crosshead speed of 0.5 mm/min until failure. Statistical analysis was performed using Kruskal-Wallis analysis of variance followed by Dunn`s multiple range test for post-hoc comparisons (p < 0.05). Weibull analysis was also performed. Results: The post/cement bond strength was significantly higher on fiber posts treated industrially (I: 23.14 +/- 8.05 MPa; II: 21.56 +/- 7.07 MPa; III: 22.37 +/- 7.00 MPa) or treated with XPBond adhesive (IV: 21.03 +/- 5.34 MPa) when compared to Prime&Bond NT application (V: 14.05 +/- 5.06 MPa), silanization (VI: 6.31 +/- 4.60 MPa) or no treatment (VII: 4.62 +/- 4.31) of conventional fiber posts (p < 0.001). Conclusion: The experimental industrial surface treatment and the adhesive application enhanced fiber post to resin cement interfacial strength. Industrial pretreatment may simplify the clinical luting procedure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glass fibre-reinforced plastics (GFRP) have been considered inherently difficult to recycle due to both: crosslinked nature of thermoset resins, which cannot be remoulded, and complex composition of the composite itself. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, efforts were made in order to recycle grinded GFRP waste, proceeding from pultrusion production scrap, into new and sustainable composite materials. For this purpose, GFRP waste recyclates, were incorporated into polyester based mortars as fine aggregate and filler replacements at different load contents and particle size distributions. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified polymer mortars. Results revealed that GFRP waste filled polymer mortars present improved flexural and compressive behaviour over unmodified polyester based mortars, thus indicating the feasibility of the GFRP industrial waste reuse into concrete-polymer composite materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fiber-reinforced composite as oral implant material: Experimental studies of glass fiber and bioactive glass in vitro and in vivo Department of Prosthetic Dentistry and Biomaterials Science, Institute of Dentistry, University of Turku, Turku, Finland 2008. Biocompatibility and mechanical properties are important variables that need to be determined when new materials are considered for medical implants. Special emphasis was placed on these characteristics in the present work, which aimed to investigate the potential of fiber-reinforced composite (FRC) material as an oral implant. Furthermore, the purpose of this study was to explore the effect of bioactive glass (BAG) on osseointegration of FRC implants. The biocompatibility and mechanical properties of FRC implants were studied both in vitro and in vivo. The mechanical properties of the bulk FRC implant were tested with a cantilever bending test, torsional test and push-out test. The biocompatibility was first evaluated with osteoblast cells cultured on FRC substrates. Bone bonding was determined with the mechanical push-out test and histological as well as histomorplanimetric evaluation. Implant surface was characterized with SEM and EDS analysis. The results of these studies showed that FRC implants can withstand the static load values comparably to titanium. Threaded FRC implants had significantly higher push-out strength than the threaded titanium implants. Cell culture study revealed no cytotoxic effect of FRC materials on the osteoblast-like-cells. Addition of BAG particles enhanced cell proliferation and mineralization of the FRC substrates The in vivo study showed that FRC implants can withstand static loading until failure without fracture. The results also suggest that the FRC implant is biocompatible in bone. The biological behavior of FRC was comparable to that of titanium after 4 and 12 weeks of implantation. Furthermore, addition of BAG to FRC implant increases peri-implant osteogenesis and bone maturation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sisal fiber is an important agricultural product used in the manufacture of ropes, rugs and also as a reinforcement of polymeric or cement-based composites. However, during the fiber production process a large amount of residues is generated which currently have a low potential for commercial use. The aim of this study is to characterize the agricultural residues by the production and improvement of sisal fiber, called field bush and refugo and verify the potentiality of their use in the reinforcement of cement-based composites. The residues were treated with wet-dry cycles and evaluated using tensile testing of fibers, scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Compatibility with the cement-based matrix was evaluated through the fiber pull-out test and flexural test in composites reinforced with 2 % of sisal residues. The results indicate that the use of treated residue allows the production of composites with good mechanical properties that are superior to the traditional composites reinforced with natural sisal fibers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Repair of segmental defects in load-bearing long bones is a challenging task because of the diversity of the load affecting the area; axial, bending, shearing and torsional forces all come together to test the stability/integrity of the bone. The natural biomechanical requirements for bone restorative materials include strength to withstand heavy loads, and adaptivity to conform into a biological environment without disturbing or damaging it. Fiber-reinforced composite (FRC) materials have shown promise, as metals and ceramics have been too rigid, and polymers alone are lacking in strength which is needed for restoration. The versatility of the fiber-reinforced composites also allows tailoring of the composite to meet the multitude of bone properties in the skeleton. The attachment and incorporation of a bone substitute to bone has been advanced by different surface modification methods. Most often this is achieved by the creation of surface texture, which allows bone growth, onto the substitute, creating a mechanical interlocking. Another method is to alter the chemical properties of the surface to create bonding with the bone – for example with a hydroxyapatite (HA) or a bioactive glass (BG) coating. A novel fiber-reinforced composite implant material with a porous surface was developed for bone substitution purposes in load-bearing applications. The material’s biomechanical properties were tailored with unidirectional fiber reinforcement to match the strength of cortical bone. To advance bone growth onto the material, an optimal surface porosity was created by a dissolution process, and an addition of bioactive glass to the material was explored. The effects of dissolution and orientation of the fiber reinforcement were also evaluated for bone-bonding purposes. The Biological response to the implant material was evaluated in a cell culture study to assure the safety of the materials combined. To test the material’s properties in a clinical setting, an animal model was used. A critical-size bone defect in a rabbit’s tibia was used to test the material in a load-bearing application, with short- and long-term follow-up, and a histological evaluation of the incorporation to the host bone. The biomechanical results of the study showed that the material is durable and the tailoring of the properties can be reproduced reliably. The Biological response - ex vivo - to the created surface structure favours the attachment and growth of bone cells, with the additional benefit of bioactive glass appearing on the surface. No toxic reactions to possible agents leaching from the material could be detected in the cell culture study when compared to a nontoxic control material. The mechanical interlocking was enhanced - as expected - with the porosity, whereas the reinforcing fibers protruding from the surface of the implant gave additional strength when tested in a bone-bonding model. Animal experiments verified that the material is capable of withstanding load-bearing conditions in prolonged use without breaking of the material or creating stress shielding effects to the host bone. A Histological examination verified the enhanced incorporation to host bone with an abundance of bone growth onto and over the material. This was achieved with minimal tissue reactions to a foreign body. An FRC implant with surface porosity displays potential in the field of reconstructive surgery, especially regarding large bone defects with high demands on strength and shape retention in load-bearing areas or flat bones such as facial / cranial bones. The benefits of modifying the strength of the material and adjusting the surface properties with fiber reinforcement and bone-bonding additives to meet the requirements of different bone qualities are still to be fully discovered.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fiber-reinforced composites (FRCs) are a new group of non-metallic biomaterials showing a growing popularity in many dental and medical applications. As an oral implant material, FRC is biocompatible in bone tissue environment. Soft tissue integration to FRC polymer material is unclear. This series of in vitro studies aimed at evaluating unidirectional E-glass FRC polymer in terms of mechanical, chemical, and biological properties in an attempt to develop a new non-metallic oral implant abutment alternative. Two different types of substrates were investigated: (a) Plain polymer (BisGMA 50%–TEGDMA 50%) and (b) Unidirectional FRC. The mechanical behavior of high fiber-density FRCs was assessed using a three-point bending test. Surface characterization was performed using scanning electron and spinning disk confocal microscopes. The surface wettability/energy was determined using sessile drop method. The blood response, including blood-clotting ability and platelet morphology was evaluated. Human gingival fibroblast cell responses - adhesion kinetics, adhesion strength, and proliferation activity - were studied in cell culture environment using routine test conditions. A novel tissue culture method was developed and used to evaluate porcine gingival tissue graft attachment and growth on the experimental composite implants. The analysis of the mechanical properties showed that there is a direct proportionality in the relationship between E-glass fiber volume fraction and toughness, modulus of elasticity, and load bearing capacity; however, flexural strength did not show significant improvement when high fiber-density FRC is used. FRCs showed moderate hydrophilic properties owing to the presence of exposed glass fibers on the polymer surface. Blood-clotting time was shorter on FRC substrates than on plain polymer. The FRC substrates also showed higher platelet activation state than plain polymer substrates. Fibroblast cell adhesion strength and proliferation rate were highly pronounced on FRCs. A tissue culture study revealed that gingival epithelium and connective tissue established an immediate close contact with both plain polymer and FRC implants. However, FRC seemed to guide epithelial migration outwards from the tissue/implant interface. Due to the anisotropic and hydrophilic nature of FRC, it can be concluded that this material enhances biological events related with soft tissue integration on oral implant surface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this investigation was to evaluate the possibility to enhance certain qualities of facial prostheses. Polymethyl methacrylate is still being used as base mate¬rial or clip carrier material, but it is hard and heavy, and debonding of the silicone from the acrylic base material is a frequent problem. This thesis aims to evaluate the use of fiber-reinforced composite (FRC) as framework material for maxillofacial silicone prostheses. FRC has been used as reinforcement in removable and fixed partial dentures since the 1990s. This material is lightweight and can be fabricated to compress the margins of the prosthesis slightly, to keep it tightly against the skin during jaw movements and facial expressions. Additionally, the use of a thermochromic pigment, colorless in room temperature and red in a cold environment, was studied in order to evaluate the possibility of using this color changing pigment in facial prostheses to mimic the color change of facial skin in cold weather. The tensile bond strength between pre-impregnated, unidirectional FRC and maxillofacial silicone elastomer was studied. Three different bonding agents or primers were compared. Bond strength was improved by one of the primers and by roughening the surface. The effect of a skin compressing glass fiber-reinforced composite framework on facial skin blood flow was studied by using a face mask, constructed with a compression pad corresponding to the outer margin of a glass fiber-reinforced framework beam of a facial prosthesis. The skin blood flow of ten healthy volunteers, aged 23-25 years, was measured during touch, light, and moderate compression of the skin, by using laser Doppler imaging technique. None of the compressions showed any marked effects on local skin blood flow. There were no significant differences between blood flow during compression and at baseline. Maxillofacial silicone elastomer was colored intrinsically with conventional color pigments: a control group containing only conventional pigments was compared to two test groups with 0.2 wt% and 0.6 wt% thermochromic pigment added. The color of the material was measured with a spectrophotometer in room temperature and after storage in a freezer. The color stability of the maxillofacial silicone elastomer colored with thermo¬chromic pigment was evaluated by artificial aging. The color dif¬ference of the L* (lightness) and a* values (redness), comparing color after the samples were stored at room temperature and in a freezer (-19°C), was statistically significant for both 0.2 wt% and 0.6 wt% thermo¬chromic pigment groups. The differences in the b* values (yellowness) were statistically significant for the 0.6 wt% group. Exposure to ultraviolet (UV) radiation led to visually noticeable and statistically signifi¬cant color changes (ΔE) in all color values in both test groups. The specimens containing thermochromic pigment were very sensitive to UV radiation. In conclusion, a framework of fiber-reinforced composite can successfully be bonded to maxillofacial silicone elastomer, and a framework beam, compressing the facial skin, did not remarkably alter the skin blood flow on healthy, young adults. The thermochromic pigment showed color change in maxillofacial silicone elastomer. However, artificial aging showed that it was too sensitive to UV radiation to be used, as such, in maxillofacial prostheses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fiber-reinforced composite fixed dental prostheses – Studies of the materials used as pontics University of Turku, Faculty of Medicine, Institute of Dentistry, Department of Biomaterials Science, Finnish Doctoral Program in Oral Sciences – FINDOS, Annales Universitatis Turkuensis, Turku, Finland 2015 Fiber-reinforced composites (FRC), a non-metallic biomaterial, represent a suitable alternative in prosthetic dentistry when used as a component of fixed dental prostheses (FDPs). Some drawbacks have been identified in the clinical performance of FRC restorations, such as delamination of the veneering material and fracture of the pontic. Therefore, the current series of studies were performed to investigate the possibilities of enhancing the mechanical and physical properties of FRC FDPs by improving the materials used as pontics, to then heighten their longevity. Four experiments showed the importance of the pontic design and surface treatment in the performance of FRC FDPs. In the first, the load-bearing capacities of inlay-retained FRC FDPs with pontics of various materials and thicknesses were evaluated. Three different pontic materials were assessed with different FRC framework vertical positioning. Thicker pontics showed increased load-bearing capacities, especially ceramic pontics. A second study was completed investigating the influence of the chemical conditioning of the ridge-lap surface of acrylic resin denture teeth on their bonding to a composite resin. Increased shear bond strength demonstrated the positive influence of the pretreatment of the acrylic surfaces, indicating dissolution of the denture surfaces, and suggesting potential penetration of the monomer systems into the surface of denture teeth. A third study analyzed the penetration depth of different monomer systems on the acrylic resin denture teeth surfaces. The possibility of establishing a durable bond between acrylic pontics and FRC frameworks was demonstrated by the ability of monomers to penetrate the surface of acrylic resin denture teeth, measured by a confocal scanning type microscope. A fourth study was designed to evaluate the load-bearing capacities of FRC FDPs using the findings of the previous three studies. In this case, the performance of pre-shaped acrylic resin denture teeth used as pontics with different composite resins as filling materials was evaluated. The filling material influenced the load-bearing capacities, providing more durable FRC FDPs. It can be concluded that the mechanical and physical properties of FRC FDPs can be improved as has been shown in the development of this thesis. The improvements reported then might provide long lasting prosthetic solutions of this kind, positioning them as potentially permanent rehabilitation treatments. Key words: fiber-reinforced composite, fixed dental prostheses, inlay-retained bridges, adhesion, acrylic resin denture teeth, dental material.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Kuitukomposiitista valmistettuja juurikanavanastoja käytetään apuna, kun restauroidaan juurihoidettuja ja kruunuosastaan runsaasti kudosta menettäneitä hampaita. Kliinisen kestävyyden kannalta on tärkeää että nasta kiinnittyy hampaaseen hyvin. Tarvittavan valomäärän saattaminen valokovetuksella pimeään juurikanavaan on vaikeaa ja sen vuoksi nastojen kiinnittämiseen suositellaan kaksoiskovetteista yhdistelmämuovisementtiä, joka kovettuu vain osittain valolla. Jotta nasta ja sementti polymeroituisivat hyvin, nastan hyvä valonläpäisy- ja sirontakyky olisi eduksi. Tehdasvalmisteisten nastojen valonläpäisykyvyn on todettu heikkenevän niiden pituuden kasvaessa. Yksilöllisesti muotoilluilla kuitukomposiittinastoilla, joilla on osittaislomittaismuoviverkostorakenne (semi-IPN) polymeerimatriisi, on todettu tehdasvalmisteisia kuitunastoja parempi sidos nastan ja yhdistelmämuovisementin välillä. Yksilöllisesti muotoilluilla kuitunastoilla näyttäisi myös olevan hyvä valonjohtamiskyky, mutta lisätutkimuksia tarvitaan. Tässä tutkimuksessa selvitettiin yksilöllisesti muotoillun kuitukomposiittinastan (EverStick Post) ja kahden tehdasvalmisteisen (Relyx Fiber Post ja GC Fiber Post) kuitukomposiittina stan valonläpäisevyyttä sekä pituuden vaikutusta niiden valonläpäisykykyyn laboratorio- olosuhteissa. Tutkimushypoteesi oli, että nastojen valonläpäisykyky heikkenee niiden pidentyessä. Tutkimuksessa kaikista nastatyypeistä valmistettiin eripituisia nastoja (4, 8, 12 ja 16 mm). Nastoille tehtiin samanpituiset testikappaleet muoviputkesta ja polyvinyylisiloksaanista, ja nastat asetettiin niiden sisään. Tämän jälkeen nastoja kovetettiin valokovettimella 10 sekuntia, ja läpi päässyt valo mitattiin MARC Resin Calibrator -laitteella. Kontrollina käytettiin tyhjää testikappaletta ilman nastaa. Keskeiseksi tulokseksi saatiin, että yksilöllisesti muotoillulla kuitukomposiittinastalla oli kaikissa pituusryhmissä muita nastoja merkitsevästi parempi valonläpäisykyky. Tulokset osoittivat myös, että kaikkien nastojen valonläpäisevyys laski merkitsevästi nastan pituuden lisääntyessä aina 12 millimetriin asti. Tulosten perusteella yksilöllisesti muotoillulla kuitukomposiittinastalla on tehdasvalmisteista nastaa parempi valonläpäisykyky. Kuitukomposiittinastojen valonläpäisykyky heikkenee niiden pituuden kasvaessa aiempien tutkimusten mukaisesti. Jatkotutkimuksissa tulisi selvittää, miten valonläpäisevyys ja siroaminen vaikuttavat nastan ja sementin polymeroitumiseen ja siten kliiniseen lopputulokseen.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tesis (Doctor en Ingeniería de Materiales) UANL, 2014.