988 resultados para activation temperature


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flourite-type nanocrystalline Ce0.9Fe0.1O2-delta and Ce0.89Fe0.1Pd0.01O2-delta solid solutions have been synthesized by solution combustion method,'.which show higher oxygen storage/release property (OSC) compared to CeO2 and Ce0.8Zr0.2O2. Temperature programmed reduction an XPS study reveal that the presence of Pd ion in Ce0.9Fe0.1O2-delta facilitates complete reduction of Fe3+ to Fe2+ state and partial reduction of Ce4+ to Ce3+ state at.temperatures as low as 105 degrees C compared to 400 degrees C for monometal-ionic Ce0.9Fe0.1O2-delta. Fe3+ ion is reduced to Fe2+ and not to Feo due to favorable redox potential for Ce4+ + Fe2+ -> Ce3+ + Fe3+ reaction. Using first-principles density functional theory calculation we determine M-O (M = Pd, Fe, Ce) bond lengths, and find that bond lengths vary from shorter (2.16 angstrom) to longer (2.9 angstrom) bond distances compared to mean Ce-O bond distance of 2.34 angstrom. for CeO2. Using these results in bond valence analysis, we show that oxygen with bond valences as low as -1.55 are created, leading to activation of lattice oxygen in the bimetal ionic catalyst. Temperatures of CO oxidation and NO reduction by CO/H-2 are lower with the bimetalionic Ce0.89Fe0.1Pd0.01O2-delta catalyst compared to monometal-ionic Ce0.9Fe0.1O2-delta and Ce0.99Pd0.01O2-delta catalysts. From XPS studies of Pd impregnated on CeO2 and Fe2O3 oxides, we show that the synergism leading to low temperature activation of lattice oxygen in bimetal-ionic catalyst Ce0.89Fe0.1Pd0.01O2-delta is due to low-temperature reduction of Pd2+ to Pd-0, followed by Pd-0 + 2Fe(3+) -> Pd2+ + 2Fe(2+), Pd-0 + 2Ce(4+) -> Pd2+ + 2Ce(3+) redox reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sr2SbMnO6 (SSM) powders were successfully synthesized at reasonably low temperatures via molten-salt synthesis (MSS) method using eutectic composition of 0.635 Li2SO4-0.365 Na2SO4 (flux). High-temperature cubic phase SSM was stabilized at room temperature by calcining the as-synthesized powders at 900 degrees C/10 h. The phase formation and morphology of these powders were characterized via X-ray powder diffraction and scanning electron microscopy, respectively. The SSM phase formation associated with similar to 60 nm sized crystallites was also confirmed by transmission electron microscopy. The activation energy associated with the particle growth was found to be 95 +/- 5 kJ mol(-1). The dielectric constant of the tetragonal phase of the ceramic (fabricated using this cubic phase powder) with and without the flux (sulphates) has been monitored as a function of frequency (100 Hz-1 MHz) at room temperature. Internal barrier layer capacitance (IBLC) model was invoked to rationalize the dielectric properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we report a systematic study of low frequency 1∕fα resistance fluctuation in thin metal films (Ag on Si) at different stages of damage process when the film is subjected to high current stressing. The resistance fluctuation (noise) measurement was carried out in situ using a small ac bias that has been mixed with the dc stressing current. The experiment has been carried out as a function of temperature in the range of 150–350 K. The experiment establishes that the current stressed film, as it undergoes damage due to various migration forces, develops an additional low-frequency noise spectral power that does not have the usual 1∕f spectral shape. The magnitude of extra term has an activated temperature dependence (activation energy of ≈0.1 eV) and has a 1∕f1.5 spectral dependence. The activation energy is the same as seen from the temperature dependence of the lifetime of the film. The extra 1∕f1.5 spectral power changes the spectral shape of the noise power as the damage process progress. The extra term likely arising from diffusion starts in the early stage of the migration process during current stressing and is noticeable much before any change can be detected in simultaneous resistance measurements. The experiment carried out over a large temperature range establish a strong correlation between the evolution of the migration process in a current stressed film and the low-frequency noise component that is not a 1∕f noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermally activated plastic flow of polycrystalline cadmium was investigated by differentialstress creep tests at 86°K and tensile tests in the temperature range 86°–473°K. The activation energy (0.55 eV) at zero effective stress and the activation volume as a function of effective stress were obtained. It is concluded that intersection of glide and forest dislocations becomes rate controlling for low temperature deformation. The approximate stacking-fault width in cadmium is deduced to be “1.5b”.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low-temperature plastic flow in copper was investigated by studying its tensile and creep deformation characteristics. The dependence of the flow stress on temperature and strain rate was used to evaluate the thermal activation energy while the activation area was derived from the change-in-stress creep experiments. A value of 0.6 eV was obtained for the total obstacle energy both in electrolytic and commerical copper. The activation areas in copper of three selected purities fell in the range 1200 to 100 b2. A forest intersection mechanism seems to control the temperature dependent part of the flow stress. The increase in the athermal component of the flow stress with impurity content in copper is attributed to a change in the dislocation density. The investigation also revealed that thermal activation of some attractive junctions also takes place during low-temperature creep. The model of attractive junction formation on a stress decrement during creep, yields a value of 45±10 ergs cm-2 for the stacking fault energy in copper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The low-temperature plastic flow of alpha-zirconium was studied by employing constantrate tensile tests and differential-stress creep experiments. The activation parameters, enthalpy and area, have been obtained as a function of stress for pure, as well as commercial zirconium. The activation area is independent of grain size and purity and falls to about 9b2 at high stresses. The deformation mechanism below about 700° K is found to be controlled by a single thermally activated process, and not a two-stage activation mechanism. Several dislocation mechanisms are examined and it is concluded that overcoming the Peierls energy humps by the formation of kink pairs in a length of dislocation is the rate-controlling mechanism. The total energy needed to nucleate a double kink is about 0.8 eV in pure zirconium and 1 eV in commercial zirconium

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electronic transport in the high temperature paramagnetic regime of the colossal magnetoresistive oxides, La(1-x)A(x)MnO(3), A=Ca, Sr, Ba, x similar or equal to 0.1-0.3, has been investigated using resistivity measurements. The main motivation for this work is to relook into the actual magnitude of the activation energy for transport in a number of manganites and study its variation as a function of hole doping (x), average A-site cation radius (< r(A)>), cationic disorder (sigma(2)) and strain (epsilon(zz)). We show that contrary to current practice, the description of a single activation energy in this phase is not entirely accurate. Our results clearly reveal a strong dependence of the activation energy on the hole doping as well as disorder. Comparing the results across different substituent species with different < r(A)> reveals the importance of sigma(2) as a metric to qualify any analysis based on (r(A)). (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth of strongly oriented or epitaxial thin films of metal oxides generally requires relatively high growth temperatures or infusion of energy to the growth surface through means such as ion bombardment. We have grown high quality epitaxial thin films of Co3O4 on different substrates at a temperature as low as 400 degreesC by low-pressure metalorganic chemical vapour deposition (MOCVD) using cobalt(II) acetylacetonate as the precursor. With oxygen as the reactant gas, polycrystalline Co3O4 films are formed on glass and Si (100) in the temperature range 400-550 degreesC. Under similar conditions of growth. highly oriented films of Co3O4 are formed on SrTiO3 (100) and LaAlO3 (100). The activation energy for the growth of polycrystalline films on glass is significantly higher than that for epitaxial growth on SrTiO3 (100). The film on LaAlO3 (100) grown at 450 degreesC shows a rocking curve FWHM of 1.61 degrees, which reduces to 1.32 degrees when it is annealed in oxygen at 725 degreesC. The film on SrTiO3 (100) has a FWHM of 0.33 degrees (as deposited) and 0.29 (after annealing at 725 degreesC). The phi -scan analysis shows cube-on-cube epitaxy on both these substrates. The quality of epitaxy on SrTiO3 (100) is comparable to the best of the perovskite-based oxide thin films grown at significantly higher temperatures. A plausible mechanism is proposed for the observed low temperature epitaxy. (C) 2001 Published by Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temperature and pressure dependence of Cl-35 NQR frequency and spin lattice relaxation time (T-1) were investigated in 2,3-dichloroanisole. Two NQR signals were observed throughout the temperature and pressure range studied. T-1 were measured in the temperature range from 77 to 300 K and from atmospheric pressure to 5 kbar. Relaxation was found to be due to the torsional motion of the molecule and also reorientation f motion of the CH3 group. T-1 versus temperature data were analyzed on the basis of Woessner and Gutowsky model, and the activation energy for the reorientation of the CH3 group was estimated. The temperature dependence of the average torsional lifetimes of the molecules and the transition probabilities were also obtained. NQR frequency shows a nonlinear behavior with pressure, indicating both dynamic and static effects of pressure. The pressure coefficients were observed to be positive for both the lines. A thermodynamic analysis of the data was carried out to determine the constant volume temperature coefficients of the NQR frequency. The variation of spin lattice time with pressure was very small, showing that the relaxation is mainly due to the torsional motions of the molecules. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ca2+-sensitivity of sheep lung cyclic-3',5'-nucleotide phosphodiesterase is provided by endogenous tightly bound calmodulin. The calcium sensitivity of a highly purified enzyme was desensitized by increasing the assay temperature. It could also be desensitized to Ca2+-activation by thiols such as dithiothreitol. The thiol-induced desensitization could be partially reversed by dialysis and almost completely reversed by dilution. The results presented in this paper indicate that thiols are possibly involved in the interaction of calmodulin with cyclic-3',5'-nucleotide phosphodiesterase. This is the first report on temperature and thiol-induced desensitization of Ca2+-sensitivity of a cyclic-3',5'-nucleotide phosphodiesterase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Artificial neural networks (ANNs) have shown great promise in modeling circuit parameters for computer aided design applications. Leakage currents, which depend on process parameters, supply voltage and temperature can be modeled accurately with ANNs. However, the complex nature of the ANN model, with the standard sigmoidal activation functions, does not allow analytical expressions for its mean and variance. We propose the use of a new activation function that allows us to derive an analytical expression for the mean and a semi-analytical expression for the variance of the ANN-based leakage model. To the best of our knowledge this is the first result in this direction. Our neural network model also includes the voltage and temperature as input parameters, thereby enabling voltage and temperature aware statistical leakage analysis (SLA). All existing SLA frameworks are closely tied to the exponential polynomial leakage model and hence fail to work with sophisticated ANN models. In this paper, we also set up an SLA framework that can efficiently work with these ANN models. Results show that the cumulative distribution function of leakage current of ISCAS'85 circuits can be predicted accurately with the error in mean and standard deviation, compared to Monte Carlo-based simulations, being less than 1% and 2% respectively across a range of voltage and temperature values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cubic pyrochlore Bi1.5Zn1.0Nb1.5O7 thin films were deposited by pulsed laser ablation on Pt(200)/SiO2/Si at 500, 550, 600, and 650 degrees C. The thin films with (222) preferred orientation were found to grow at 650 degrees C with better crystallinity which was established by the lowest full-width half maxima of similar to 0.38. The dielectric response of the thin films grown at 650 degrees C have been characterized within a temperature range of 270-650 K and a frequency window of 0.1-100 kHz. The dielectric dispersion in the thin films shows a Maxwell-Wagner type relaxation with two different kinds of response confirmed by temperature dependent Nyquist plots. The ac conduction of the films showed a varied behavior in two different frequency regions. The power law exponent values of more than 1 at high frequency are explained by a jump-relaxation-model. The possibility of grain boundary related large polaronic hopping, due to two different power law exponents and transformation of double to single response in Nyquist plots at high temperature, has been excluded. The ``attempt jump frequency'' obtained from temperature dependent tangent loss and real part of dielectric constants, has been found to lie in the range of their lattice vibronic frequencies (10(12)-10(13) Hz). The activation energy arising from a large polaronic hopping due to trapped charge at low frequency region has been calculated from the ac conduction behavior. The range of activation energies (0.26-0.59. eV) suggests that the polaronic hopping at low frequency is mostly due to oxygen vacancies. (C) 2010 American Institute of Physics. doi:10.106311.3457335]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purified trehalases of the mesophilic fungus, Neurospora crassa, and the thermophilic fungus, Thermomyces lanuginosus, had similar temperature and pH optima for activity, but differed in molecular weight, electrophoretic mobility and Michaelis constant. At lower concentration, trehalases from both fungi were inactivated to similar extent at 60°C. While purified trehalase of T. lanuginosus was afforded protection against heat-inactivation by proteinaceous protective factor(s) present in mycelial extracts, by bovine serum albumin and by casein, these did not afford protection to N. crassa trehalase against heat inactivation. Both trehalases exhibited discontinuous Arrhenius plots with temperature of discontinuity at 40°C. The activation energy calculated from the slope of the Arrhenius plot was higher for the T. lanuginosus enzyme. The plots of apparent K m versus 1/T for trehalases of N. crassa and T. lanuginosus were linear from 30° to 60°C. The results show that purified trehalases of the mesophilic and the thermophilic fungus are distinct. Although, these exhibit similar thermostability of their catalytic function at low concentration, distinctive thermal stability characteristics of thermophilic enzyme become apparent at high protein concentration. This could be brought about in the cell by the enzyme itself, or by other proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conductivity of highly doped polypyrrole is less than that of intermediately doped samples, by two orders of magnitude, at 4.2 K. This may be due to more number of bipolarons in highly doped samples. Bipolarons require four times more activation energy than single polarons to hop by thermally induced virtual transitions to intermediate dissociated polaron states than by the nondissociated process. The conduction process in these polyconjugated systems involve ionization from deep trapped states, having a View the MathML source dependence, hopping from localised states, having View the MathML source dependence, and intersite tunnel percolation, having T−1 dependence. The interplay of these factors leads to a better fit by View the MathML source. The mechanism for this exponential behaviour need not be same as that of Motts variable range hopping. Conduction by percolation is possible, if an infinite cluster of chains can be connected by impurity centers created by dopant ions. The tendency for the saturation of conductivity at very low temperatures is due to the possibility of intersite tunnel percolation is disordered polaronic systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strain-rate effects on the low-cycle fatigue (LCF) behavior of a NIMONIC PE-16 superalloy have been evaluated in the temperature range of 523 to 923 K. Total-strain-controlled fatigue tests were per-formed at a strain amplitude of +/-0.6 pct on samples possessing two different prior microstructures: microstructure A, in the solution-annealed condition (free of gamma' and carbides); and microstructure B, in a double-aged condition with gamma' of 18-nm diameter and M23C6 carbides. The cyclic stress response behavior of the alloy was found to depend on the prior microstructure, testing temperature, and strain rate. A softening regime was found to be associated with shearing of ordered gamma' that were either formed during testing or present in the prior microstructure. Various manifestations of dynamic strain aging (DSA) included negative strain rate-stress response, serrations on the stress-strain hysteresis loops, and increased work-hardening rate. The calculated activation energy matched well with that for self-diffusion of Al and Ti in the matrix. Fatigue life increased with an increase in strain rate from 3 x 10(-5) to 3 x 10(-3) s-1, but decreased with further increases in strain rate. At 723 and 823 K and low strain rates, DSA influenced the deformation and fracture behavior of the alloy. Dynamic strain aging increased the strain localization in planar slip bands, and impingement of these bands caused internal grain-boundary cracks and reduced fatigue life. However, at 923 K and low strain rates, fatigue crack initiation and propagation were accelerated by high-temperature oxidation, and the reduced fatigue life was attributed to oxidation-fatigue interaction. Fatigue life was maximum at the intermediate strain rates, where strain localization was lower. Strain localization as a function of strain rate and temperature was quantified by optical and scanning electron microscopy and correlated with fatigue life.