992 resultados para Zonal flux distribution
Resumo:
Series reactors are used in distribution grids to reduce the short-circuit fault level. Some of the disadvantages of the application of these devices are the voltage drop produced across the reactor and the steep front rise of the transient recovery voltage (TRV), which generally exceeds the rating of the associated circuit breaker. Simulations were performed to compare the characteristics of a saturated core High-Temperature Superconducting Fault Current Limiter (HTS FCL) and a series reactor. The design of the HTS FCL was optimized using the evolutionary algorithm. The resulting Pareto frontier curve of optimum solution is presented in this paper. The results show that the steady-state impedance of an HTS FCL is significantly lower than that of a series reactor for the same level of fault current limiting. Tests performed on a prototype 11 kV HTS FCL confirm the theoretical results. The respective transient recovery voltages (TRV) of the HTS FCL and an air core reactor of comparable fault current limiting capability are also determined. The results show that the saturated core HTS FCL has a significantly lower effect on the rate of rise of the circuit breaker TRV as compared to the air core reactor. The simulations results are validated with shortcircuit test results.
Resumo:
The effect of a magnetic field of two magnetic coils on the ion current density distribution in the setup for low-temperature plasma deposition is investigated. The substrate of 400 mm diameter is placed at a distance of 325 mm from the plasma duct exit, with the two magnetic coils mounted symmetrically under the substrate at a distance of 140 mm relative to the substrate centre. A planar probe is used to measure the ion current density distribution along the plasma flux cross-sections at distances of 150, 230, and 325 mm from the plasma duct exit. It is shown that the magnetic field strongly affects the ion current density distribution. Transparent plastic films are used to investigate qualitatively the ion density distribution profiles and the effect of the magnetic field. A theoretical model is developed to describe the interaction of the ion fluxes with the negative space charge regions associated with the magnetic trapping of the plasmaelectrons. Theoretical results are compared with the experimental measurements, and a reasonable agreement is demonstrated.
Resumo:
The growth of carbon nanocone arrays on metal catalyst particles by deposition from a low-temperature plasma is studied by multiscale Monte Carlo/surface diffusion numerical simulation. It is demonstrated that the variation in the degree of ionization of the carbon flux provides an effective control of the growth kinetics of the carbon nanocones, and leads to the formation of more uniform arrays of nanostructures. In the case of zero degree of ionization (neutral gas process), a width of the distribution of nanocone heights reaches 360 nm with the nanocone mean height of 150 nm. When the carbon flux of 75% ionization is used, the width of the distribution of nanocone heights decreases to 100 nm, i.e., by a factor of 3.6. A higher degree of ionization leads to a better uniformity of the metal catalyst saturation and the nanocone growth, thus contributing to the formation of more height-uniform arrays of carbon nanostructures.
Resumo:
The measurement of radon ((222)Rn) activity flux using activated charcoal canisters was examined to investigate the distribution of the adsorbed (222)Rn in the charcoal bed and the relationship between (222)Rn activity flux and exposure time. The activity flux of (222)Rn from five sources of varying strengths was measured for exposure times of one, two, three, five, seven, 10, and 14 days. The distribution of the adsorbed (222)Rn in the charcoal bed was obtained by dividing the bed into six layers and counting each layer separately after the exposure. (222)Rn activity decreased in the layers that were away from the exposed surface. Nevertheless, the results demonstrated that only a small correction might be required in the actual application of charcoal canisters for activity flux measurement, where calibration standards were often prepared by the uniform mixing of radium ((226)Ra) in the matrix. This was because the diffusion of (222)Rn in the charcoal bed and the detection efficiency as a function of the charcoal depth tended to counterbalance each other. The influence of exposure time on the measured (222)Rn activity flux was observed in two situations of the canister exposure layout: (a) canister sealed to an open bed of the material and (b) canister sealed over a jar containing the material. The measured (222)Rn activity flux decreased as the exposure time increased. The change in the former situation was significant with an exponential decrease as the exposure time increased. In the latter case, lesser reduction was noticed in the observed activity flux with respect to exposure time. This reduction might have been related to certain factors, such as absorption site saturation or the back diffusion of (222)Rn gas occurring at the canister-soil interface.
Resumo:
Transport plays an important role in the distribution of long-lived gases such as ozone and water vapour in the atmosphere. Understanding of observed variability in these gases as well as prediction of the future changes depends therefore on our knowledge of the relevant atmospheric dynamics. This dissertation studies certain dynamical processes in the stratosphere and upper troposphere which influence the distribution of ozone and water vapour in the atmosphere. The planetary waves that originate in the troposphere drive the stratospheric circulation. They influence both the meridional transport of substances as well as parameters of the polar vortices. In turn, temperatures inside the polar vortices influence abundance of the Polar Stratospheric Clouds (PSC) and therefore the chemical ozone destruction. Wave forcing of the stratospheric circulation is not uniform during winter. The November-December averaged stratospheric eddy heat flux shows a significant anticorrelation with the January-February averaged eddy heat flux in the midlatitude stratosphere and troposphere. These intraseasonal variations are attributable to the internal stratospheric vacillations. In the period 1979-2002, the wave forcing exhibited a negative trend which was confined to the second half of winter only. In the period 1958-2002, area, strength and longevity of the Arctic polar vortices do not exhibit significant long-term changes while the area with temperatures lower than the threshold temperature for PSC formation shows statistically significant increase. However, the Arctic vortex parameters show significant decadal changes which are mirrored in the ozone variability. Monthly ozone tendencies in the Northern Hemisphere show significant correlations (|r|=0.7) with proxies of the stratospheric circulation. In the Antarctic, the springtime vortex in the lower stratosphere shows statistically significant trends in temperature, longevity and strength (but not in area) in the period 1979-2001. Analysis of the ozone and water vapour vertical distributions in the Arctic UTLS shows that layering below and above the tropopause is often associated with poleward Rossby wave-breaking. These observations together with calculations of cross-tropopause fluxes emphasize the importance of poleward Rossby wave breaking for the stratosphere-troposphere exchange in the Arctic.
Resumo:
The velocity distribution function for the steady shear flow of disks (in two dimensions) and spheres (in three dimensions) in a channel is determined in the limit where the frequency of particle-wall collisions is large compared to particle-particle collisions. An asymptotic analysis is used in the small parameter epsilon, which is naL in two dimensions and na(2)L in three dimensions, where; n is the number density of particles (per unit area in two dimensions and per unit volume in three dimensions), L is the separation of the walls of the channel and a is the particle diameter. The particle-wall collisions are inelastic, and are described by simple relations which involve coefficients of restitution e(t) and e(n) in the tangential and normal directions, and both elastic and inelastic binary collisions between particles are considered. In the absence of binary collisions between particles, it is found that the particle velocities converge to two constant values (u(x), u(y)) = (+/-V, O) after repeated collisions with the wall, where u(x) and u(y) are the velocities tangential and normal to the wall, V = (1 - e(t))V-w/(1 + e(t)), and V-w and -V-w, are the tangential velocities of the walls of the channel. The effect of binary collisions is included using a self-consistent calculation, and the distribution function is determined using the condition that the net collisional flux of particles at any point in velocity space is zero at steady state. Certain approximations are made regarding the velocities of particles undergoing binary collisions :in order to obtain analytical results for the distribution function, and these approximations are justified analytically by showing that the error incurred decreases proportional to epsilon(1/2) in the limit epsilon --> 0. A numerical calculation of the mean square of the difference between the exact flux and the approximate flux confirms that the error decreases proportional to epsilon(1/2) in the limit epsilon --> 0. The moments of the velocity distribution function are evaluated, and it is found that [u(x)(2)] --> V-2, [u(y)(2)] similar to V-2 epsilon and -[u(x)u(y)] similar to V-2 epsilon log(epsilon(-1)) in the limit epsilon --> 0. It is found that the distribution function and the scaling laws for the velocity moments are similar for both two- and three-dimensional systems.
Resumo:
The velocity distribution for a vibrated granular material is determined in the dilute limit where the frequency of particle collisions with the vibrating surface is large compared to the frequency of binary collisions. The particle motion is driven by the source of energy due to particle collisions with the vibrating surface, and two dissipation mechanisms-inelastic collisions and air drag-are considered. In the latter case, a general form for the drag force is assumed. First, the distribution function for the vertical velocity for a single particle colliding with a vibrating surface is determined in the limit where the dissipation during a collision due to inelasticity or between successive collisions due to drag is small compared to the energy of a particle. In addition, two types of amplitude functions for the velocity of the surface, symmetric and asymmetric about zero velocity, are considered. In all cases, differential equations for the distribution of velocities at the vibrating surface are obtained using a flux balance condition in velocity space, and these are solved to determine the distribution function. It is found that the distribution function is a Gaussian distribution when the dissipation is due to inelastic collisions and the amplitude function is symmetric, and the mean square velocity scales as [[U-2](s)/(1 - e(2))], where [U-2](s) is the mean square velocity of the vibrating surface and e is the coefficient of restitution. The distribution function is very different from a Gaussian when the dissipation is due to air drag and the amplitude function is symmetric, and the mean square velocity scales as ([U-2](s)g/mu(m))(1/(m+2)) when the acceleration due to the fluid drag is -mu(m)u(y)\u(y)\(m-1), where g is the acceleration due to gravity. For an asymmetric amplitude function, the distribution function at the vibrating surface is found to be sharply peaked around [+/-2[U](s)/(1-e)] when the dissipation is due to inelastic collisions, and around +/-[(m +2)[U](s)g/mu(m)](1/(m+1)) when the dissipation is due to fluid drag, where [U](s) is the mean velocity of the surface. The distribution functions are compared with numerical simulations of a particle colliding with a vibrating surface, and excellent agreement is found with no adjustable parameters. The distribution function for a two-dimensional vibrated granular material that includes the first effect of binary collisions is determined for the system with dissipation due to inelastic collisions and the amplitude function for the velocity of the vibrating surface is symmetric in the limit delta(I)=(2nr)/(1 - e)much less than 1. Here, n is the number of particles per unit width and r is the particle radius. In this Limit, an asymptotic analysis is used about the Limit where there are no binary collisions. It is found that the distribution function has a power-law divergence proportional to \u(x)\((c delta l-1)) in the limit u(x)-->0, where u(x) is the horizontal velocity. The constant c and the moments of the distribution function are evaluated from the conservation equation in velocity space. It is found that the mean square velocity in the horizontal direction scales as O(delta(I)T), and the nontrivial third moments of the velocity distribution scale as O(delta(I)epsilon(I)T(3/2)) where epsilon(I) = (1 - e)(1/2). Here, T = [2[U2](s)/(1 - e)] is the mean square velocity of the particles.
Resumo:
The flux tube model offers a pictorial description of what happens during the deconfinement phase transition in QCD. The three-point vertices of a flux tube network lead to formation of baryons upon hadronization. Therefore, correlations in the baryon number distribution at the last scattering surface are related to the preceding pattern of the flux tube vertices in the quark-gluon plasma, and provide a signature of the nearby deconfinement phase transition. I discuss the nature of the expected signal, and how to extract it from the experimental data for heavy ion collisions at RHIC and LHC.
Resumo:
Quasigeostrophic turbulence on a beta-plane with a finite deformation radius is studied numerically, with particular emphasis on frequency and combined wavenumber-frequency domain analyses. Under suitable conditions, simulations with small-scale random forcing and large-scale drag exhibit a spontaneous formation of multiple zonal jets. The first hint of wave-like features is seen in the distribution of kinetic energy as a function of frequency; specifically, for progressively larger deformation scales, there are systematic departures in the form of isolated peaks (at progressively higher frequencies) from a power-law scaling. Concomitantly, there is an inverse flux of kinetic energy in frequency space which extends to lower frequencies for smaller deformation scales. The identification of these peaks as Rossby waves is made possible by examining the energy spectrum in frequency-zonal wavenumber and frequency-meridional wavenumber diagrams. In fact, the modified Rhines scale turns out to be a useful measure of the dominant meridional wavenumber of the modulating Rossby waves; once this is fixed, apart from a spectral peak at the origin (the steady jet), almost all the energy is contained in westward propagating disturbances that follow the theoretical Rossby dispersion relation. Quite consistently, noting that the zonal scale of the modulating waves is restricted to the first few wavenumbers, the energy spectrum is almost entirely contained within the corresponding Rossby dispersion curves on a frequency-meridional wavenumber diagram. Cases when jets do not form are also considered; once again, there is a hint of Rossby wave activity, though the spectral peaks are quite muted. Further, the kinetic energy scaling in frequency domain follows a -5/3 power-law and is distributed much more broadly in frequency-wavenumber diagrams. (C) 2015 AIP Publishing LLC.
Resumo:
We use numerical dynamo models with heterogeneous core-mantle boundary (CMB) heat flux to show that lower mantle lateral thermal variability may help support a dynamo under weak thermal convection. In our reference models with homogeneous CMB heat flux, convection is either marginally supercritical or absent, always below the threshold for dynamo onset. We find that lateral CMB heat flux variations organize the flow in the core into patterns that favour the growth of an early magnetic field. Heat flux patterns symmetric about the equator produce non-reversing magnetic fields, whereas anti-symmetric patterns produce polarity reversals. Our results may explain the existence of the geodynamo prior to inner core nucleation under a tight energy budget. Furthermore, in order to sustain a strong geomagnetic field, the lower mantle thermal distribution was likely dominantly symmetric about the equator. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
An experimental investigation was conducted to study the holdup distribution of oil and water two-phase flow in two parallel tubes with unequal tube diameter. Tests were performed using white oil (of viscosity 52 mPa s and density 860 kg/m(3)) and tap water as liquid phases at room temperature and atmospheric outlet pressure. Measurements were taken of water flow rates from 0.5 to 12.5 m(3)/h and input oil volume fractions from 3 to 94 %. Results showed that there were different flow pattern maps between the run and bypass tubes when oil-water two-phase flow is found in the parallel tubes. At low input fluid flow rates, a large deviation could be found on the average oil holdup between the bypass and the run tubes. However, with increased input oil fraction at constant water flow rate, the holdup at the bypass tube became close to that at the run tube. Furthermore, experimental data showed that there was no significant variation in flow pattern and holdup between the run and main tubes. In order to calculate the holdup in the form of segregated flow, the drift flux model has been used here.
Resumo:
The melt flow and temperature distribution in a 200 mm silicon Czochralski furnace with a cusp magnetic field was modeled and simulated by using a finite-volume based FLUTRAPP ( Fluid Flow and Transport Phenomena Program) code. The melt flow in the crucible was focused, which is a result of the competition of buoyancy, the centrifugal forces caused by the rotations of the crucible and crystal, the thermocapillary force on the free surfaces and the Lorentz force induced by the cusp magnetic field. The zonal method for radiative heat transfer was used in the growth chamber, which was confined by the crystal surface, melt surface, crucible, heat shield, and pull chamber. It was found that the cusp magnetic field could strength the dominant counter-rotating swirling flow cell in the crucible and reduce the flow oscillation and the pulling-rate fluctuation. The fluctuation of dopant and oxygen concentration in the growing crystal could thus be smoothed.
Resumo:
This paper extends two-dimensional model of symmetric magnetostatic flux arches confined in stratified atmospheres (Zhang and Hu, 1992, 1993) to asymmetric models. Numerical results show that the flux structure is influenced greatly by the boundary condition of magnetic field, the force-free factor, the atmospheric pressure distribution and the position of footpoints (especially the width ratio of outlet to entrance, which differs from symmetric case).
Resumo:
Two-dimensional magnetostatic models of flux structure confined in stratified atmosphere are discussed in the present paper. The magnetic field in the flux structure is assumed to be force-free at the first step. Numerical solutions for this nonlinear free boundary problem are obtained by finite element method. Results show clearly the relation between the inside fields and outside pressure, especially the influence of atmospheric pressure distribution on the flux structure.