959 resultados para ZnO:Ga
Resumo:
As printed and flexible plastic electronic gadgets become increasingly viable today, there is a need to develop materials that suit the fabrication processes involved. Two desirable requirements are solution-processable active materials or precursors and low-temperature processability. In this article, we describe a straightforward method of depositing ZnO films by simple spin coating of an organometallic diethylzinc precursor solution and annealing the resulting film at low temperatures (≤200 °C) without involving any synthetic steps. By controlling the humidity in which annealing is conducted, we are able to adjust the intrinsic doping level and carrier concentration in diethylzinc-derived ZnO. Doped or conducting transport layers are greatly preferable to undoped layers as they enable low-resistance contacts and minimize the potential drops. This ability to controllably realize doped ZnO is a key feature of the fabrication process that we describe in this article. We employ field-effect measurements as a diagnostic tool to measure doping levels and mobilities in ZnO and demonstrate that doped ZnO with high charge carrier concentration is ideal for solar cell applications. Respectable power conversion efficiencies (up to 4.5%) are achieved in inverted solar cells that incorporate diethylzinc-derived ZnO films as the electron transport layer and organic blends as the active material. Extensions of this approach to grow ternary and quaternary films with organometallic precursor chemicals will enable solution based growth of a number of semiconductor films as well as a method to dope them.
Resumo:
The Archean Hollandaire volcanogenic massive sulfide deposit is a felsic–siliciclastic VMS deposit located in the Murchison Domain of the Youanmi Terrane, Yilgarn Craton, Western Australia. It is hosted in a succession of turbidites, mudstones and coherent rhyodacite sills and has been metamorphosed to upper greenschist/lower amphibolite facies and includes a pervasive S1 deformational fabric. The coherent rhyodacitic sills are interpreted as syndepositional based on geochemical similarities with well-known VMS-associated felsic rocks and similar foliations to the metasediments. We offer several explanations for the absence of textural evidence (e.g. breccias) for syn-depositional origins: 1) the subaqueous sediments were dehydrated by long-lived magmatism such that no pore-water remained to drive quench fragmentation; 2) pore-space occlusion by burial and/or, 3) alteration overprinting and obscuring of primary breccias at contact margins. Mineralisation occurs by sub-seafloor replacement of original host rocks in two ore bodies, Hollandaire Main (~125 x >500 m and ~8 m thick) and Hollandaire West (~100 x 470 m and ~5 m thick), and occurs in three main textural styles, massive sulfides, which are exclusively hosted in turbidites and mudstones, and stringer and disseminated sulfides, which are also hosted in coherent rhyodacite. Most sulfides have textures consistent with remobilisation and recrystallisation. Hydrothermal metamorphism has altered the hangingwall and footwall to similar degrees, with significant gains in Mg, Mn and K and losses in Na, Ca and Sr. Garnet and staurolite porphyryoblasts also exhibit a footprint around mineralisation, extending up to 30 m both above and below the ore zone. High precision thermal ionisation mass spectrometry of zircons extracted from the coherent rhyodacite yield an age of 2759.5 ± 0.9 Ma, which along with geochemical comparisons, places the succession within the 2760–2735 Ma Greensleeves Formation of the Polelle Group of the Murchison Supergroup. Geochemical and geochronological evidence link the coherent rhyodacite sills to the Peter Well Granodiorite pluton ~2 km to the W, which acted as the heat engine driving hydrothermal circulation during VMS mineralisation. This study highlights the importance of both: detailed physical volcanological studies from which an accurate assessment of timing relationships, particularly the possibility of intrusions dismembering ore horizons, can be made; and identifying synvolcanic plutons and other similar suites, for VMS exploration targets in the Youanmi Terrane and worldwide.
Resumo:
Target-tilted room temperature sputtering of aluminium doped zinc oxide (AZO) provides transparent conducting electrodes with sheet resistances of <10 Ω □-1 and average transmittance in the visible region of up to 84%. The properties of the AZO electrode are found to be strongly dependent on the target-tilting angle and film thickness. The AZO electrodes showed comparable performance to commercial indium tin oxide (ITO) electrodes in organic photovoltaic (OPV) devices. OPV devices containing a bulk heterojunction active layer comprised of poly(3-n-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) and an AZO transparent conducting electrode had a power conversion efficiency (PCE) of up to 2.5% with those containing ITO giving a PCE of 2.6%. These results demonstrate that AZO films are a good alternative to ITO for transparent conducting electrodes.
Resumo:
This work reports the effect of seed nanoparticle size and concentration effects on heterogeneous crystal nucleation and growth in colloidal suspensions. We examined these effects in the Au nanoparticle-seeded growth of Au-ZnO hetero-nanocrystals under synthesis conditions that generate hexagonal, cone-shaped ZnO nanocrystals. It was observed that small (~ 4 nm) Au seed nanoparticles form one-to-one Au-ZnO hetero dimers and that Au nanoparticle seeds of this size can also act as crystallization ‘catalysts’ that readily promote the nucleation and growth of ZnO nanocrystals. Larger seed nanoparticles (~9 nm, ~ 11 nm) provided multiple, stable ZnO-nucleation sites, generating multi-crystalline hetero trimers, tetramers and oligomers.
Resumo:
The thick package of ~2.7 Ga mafic and ultramafic lavas and intrusions preserved among the Neoarchean of the Kalgoorlie Terrene in Western Australia provides valuable insight into geological processes controlling the most prodigious episode of growth and preservation of juvenile continental crust in Earth’s history. Limited exposure of these rocks results in uncertainty about their age, physical and chemical characteristics, and stratigraphic relationships. This in turn prevents confident correlation of regional occurrences of mafic and ultramafic successions (both intrusive and extrusive) and hinders the interpretation of tectonic setting and magmatic evolution. A recent stratigraphic drilling program of the Neoarchean stratigraphy of the Agnew Greenstone Belt in Western Australia has provided continuous exposures through a c. 7 km thick sequence of mafic and ultramafic units. In this study, we present a volcanological, lithogeochemical and chronological study of the Agnew Greenstone Belt, and provide the first pre-2690 Ma regional correlation across the Kalgoorlie Terrane. The Agnew Greenstone Belt records ~30 m.y. of episodic ultramafic-mafic magmatism that includes two cycles, each defined by a komatiite that is overlain by units that become more evolved and contaminated with time. The sequence is divided into nine conformable packages, each consisting of stacked subaqueous lava flows and comagmatic intrusions, as well as two sills without associated extrusions. Lavas, with the exception of intercalations between two units, form a layer-cake stratigraphy and were likely erupted from a system of fissures tapping the same magma source. The komatiites are not contaminated by continental crust ([La/Sm]PM ~0.7) and are of the Al-undepleted Munro-type. Crustal contamination is evident in many units (Songvang Basalt, Never Can Tell Basalt, Redeemer Basalt, and Turrett Dolerite), as judged by [La/Sm]>1, negative Nb and Ti anomalies, and geochemical mixing trends towards felsic contaminants. Crystal fractionation was also significant, with early olivine and chromite (Mg#>65) followed by plagioclase and clinopyroxene removal (Mg<65), and in the most evolved case, titanomagnetite accumulation. Three new TIMS dates on granophyric zones of mafic sills and one ICP-MS date from an interflow felsic tuff are presented and used for regional stratigraphic correlation. Cycle I magmatism began at ~2720 Ma and ended ~2705 Ma, whereas cycle II began ~2705 Ma and ended at 2690.7±1.2 Ma. Regional correlations indicate the western Kalgoorlie Terrane consists of a remarkably similar stratigraphy that can be recognised at Agnew, Ora Banda and Coolgardie, whereas the eastern part of the terrane (e.g., Kambalda Domain) does not include cycle I, but correlates well with cycle II. This research supports an autochthonous model of greenstone formation, in which one large igneous province, represented by two complete cycles, is constructed on sialic crust. New stratigraphic correlations for the Kalgoorlie Terrane indicate that many units can be traced over distances >100 km, which has implications for exploration targeting for stratigraphically hosted ultramafic Ni and VMS deposits.
Resumo:
Synopsis and critique of the unofficial American/Australian co-production film of animation and fantasy genres.
Resumo:
We report the growth of one-dimensional ZnO nanostructures with different morphologies such as nanoneedles, nanorods, nanobelts from Zn powder/granule. The growth process is different from the conventional vapor-solid mechanism. The advantage of this method is that neither a catalyst nor any gas flow is required for the synthesis of nanostructures. Depending upon the Zn powder or Zn granules as the starting material different nanostructures have been synthesized which demonstrates the versatility of the technique.
Resumo:
Semieonducting GaxTe~oo-x (17 -< x _< 25) glasses have been prepared by melt quenching method and thermal crystallization studies carried out using differential scanning calorimetry. On heating, virgin GaxTel0o-x glasses exhibit one glass transition and two crystallization reactions.The first crystallization reaction corresponds to the precipitation of hexagonal Te and the second one to the crystallization of the matrix into zinc blende Ga2Te3 phase. If GaxTeloo-x glasses are quenched to ambient temperature from Tcrl and reheated, they exhibit the phenomenon of double glass transition.
Resumo:
Experimental investigations into the dielectric properties of epoxy-ZnO nanocomposites at different filler loadings reveal few unique behaviors (at certain filler loadings) and also advantageous characteristics in contrast to the properties obtained for the corresponding microcomposites. Results demonstrate that in nanocomposites, it is possible to achieve lower values of permittivity and tan delta with respect to unfilled epoxy over a wide frequency range. Analysis of the results attributes this interesting observation to the interaction dynamics between the epoxy chains and the ZnO nanoparticles at the interfacial area. The dc volume resistivities and ac dielectric strengths of nanocomposites were also experimentally determined in the present study and the obtained characteristics are found to be different as compared to the results obtained for microcomposites. The volume fraction and nature of the interfaces in the bulk of the composites seem to influence this difference in the examined dielectric properties of the nanocomposites.
Resumo:
We report linear and nonlinear optical properties of the biologically important Na doped ZnO nanoparticle dispersions. Interesting morphological changes involving a spherical to flowerlike transition have been observed with Na doping. Optical absorption measurements show an exciton absorption around 368 nm. Photoluminescence measurements reveal exciton recombination emission, along with shallow and deep trap emissions. The increased intensity of shallow trap emission with Na doping is attributed to oxygen deficiency and shape changes associated with doping. Nonlinear optical measurements show a predominantly two-photon induced, excited state absorption, when excited with 532 nm, 5 ns laser pulses, indicating potential optical limiting applications.
Resumo:
In this paper, we report the synthesis and self assembly of various sizes of ZnO nanocrystals. While the crystal structure and the quantum confinement of nanocrystals were mainly characterized using XRD and UV absorption spectra, the self assembly and long range ordering were studied using scanning tunneling microscopy after spin casting the nanocrystal film on the highly oriented pyrolytic graphite surface. We observe self assembly of these nanocrystals over large areas making them ideal candidates for various potential applications. Further, the electronic structure of the individual dots is obtained from the current-voltage characteristics of the dots using scanning tunneling spectroscopy and compared with the density of states obtained from the tight binding calculations. We observe an excellent agreement with the experimentally obtained local density of states and the theoretically calculated density of states.