954 resultados para Xylan hydrolysis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In todays era of energy crisis and global warming, hydrogen has been projected as a sustainable alternative to depleting CO2-emitting fossil fuels. However, its deployment as an energy source is impeded by many issues, one of the most important being storage. Chemical hydrogen storage materials, in particular B?N compounds such as ammonia borane, with a potential storage capacity of 19.6 wt?% H2 and 0.145 kg?H?2?L-1, have been intensively studied from the standpoint of addressing the storage issues. Ammonia borane undergoes dehydrogenation through hydrolysis at room temperature in the presence of a catalyst, but its practical implementation is hindered by several problems affecting all of the chemical compounds in the reaction scheme, including ammonia borane, water, borate byproducts, and hydrogen. In this Minireview, we exhaustively survey the state of the art, discuss the fundamental problems, and, where applicable, propose solutions with the prospect of technological applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new class of macrobicyclic dinickel(II) complexes Ni2L1,2 B](ClO4)(4) (1-6), where L-1,L-2 are polyaza macrobicyclic binucleating ligands, and B is a N,N-donor heterocyclic base (viz. 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen)) are synthesized and characterized. The redox, catalytic, DNA binding and DNA cleavage properties were studied. They exhibit two irreversible waves in the cathodic region around E-pc = -0.95 V and E-pa = -0.85 V vs. Ag/Ag+ in CH3CN-0.1 M TBAP, respectively. The first order rate constants for the hydrolysis of 4-nitrophenylphosphate to 4-nitrophenolate by the dinickel(II) complexes 1-6 are in the range from 3.36 x 10(-5) to 10.83 x 10(-5) Ms-1. The complexes 3 and 6 show good binding propensity to calf thymus DNA giving binding constant values (K-b) in the range from 3.08 x 10(5) to 5.37 x 10(5) M-1. The binding site sizes and viscosity data suggest the DNA intercalative and/or groove binding nature of the complexes. The complexes display significant hydrolytic cleavage of supercoiled pBR322DNA at pH 7.2 and 37 degrees C. The hydrolytic cleavage of DNA by the complexes is supported by the evidence from free radical quenching and T4 ligase ligation. The pseudo Michaelis-Menten kinetic parameters k(cat) = 5.44 x 10(-2) h(-1) and K-M = 6.23 x 10(-3) M for complex 3 were obtained. Complex 3 also shows an enormous enhancement of the cleavage rate, of 1.5 x 10(6), in comparison to the uncatalysed hydrolysis rate (k = 3.6 x 10(-8) h(-1)) of ds-DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Escherichia coli, the filament of RecA formed on single-stranded DNA (ssDNA) is essential for recombinational DNA repair. Although ssDNA-binding protein (SSB) plays a complicated role in RecA reactions in vivo, much of our understanding of the mechanism is based on RecA binding directly to ssDNA. Here we investigate the role of SSB in the regulation of RecA polymerization on ssDNA, based on the differential force responses of a single 576-nucleotide-long ssDNA associated with RecA and SSB. We find that SSB outcompetes higher concentrations of RecA, resulting in inhibition of RecA nucleation. In addition, we find that pre-formed RecA filaments de-polymerize at low force in an ATP hydrolysis- and SSB-dependent manner. At higher forces, re-polymerization takes place, which displaces SSB from ssDNA. These findings provide a physical picture of the competition between RecA and SSB under tension on the scale of the entire nucleoprotein SSB array, which have broad biological implications particularly with regard to competitive molecular binding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteria present in natural environments such as soil have evolved multiple strategies to escape predation. We report that natural isolates of Enterobacteriaceae that actively hydrolyze plant-derived aromatic beta-glucosides such as salicin, arbutin and esculin, are able to avoid predation by the bacteriovorous amoeba Dictyostelium discoideum and nematodes of multiple genera belonging to the family Rhabditidae. This advantage can be observed under laboratory culture conditions as well as in the soil environment. The aglycone moiety released by the hydrolysis of beta-glucosides is toxic to predators and acts via the dopaminergic receptor Dop-1 in the case of Caenorhabditis elegans. While soil isolates of nematodes belonging to the family Rhabditidae are repelled by the aglycone, laboratory strains and natural isolates of Caenorhabditis sp. are attracted to the compound, mediated by receptors that are independent of Dop-1, leading to their death. The b-glucosides-positive (Bgl(+)) bacteria that are otherwise non-pathogenic can obtain additional nutrients from the dead predators, thereby switching their role from prey to predator. This study also offers an evolutionary explanation for the retention by bacteria of `cryptic' or `silent' genetic systems such as the bgl operon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A kinetic study of the hydrolytic stabilities of mono-, di-, and 2-chloro-2-deoxy septanosides, under acid-catalysis, is reported herein. A comparison of mono-and diseptanosides, shows that the glycosidic bond in the disaccharide is more stable than the monosaccharide. Further the glycosidic bond at the reducing end hydrolyzes almost twice as faster than that of the non-reducing end of the disaccharide. 2-Chloro-2-deoxy septanoside is found to be the most stable and its glycosidic bond hydrolysis occurs at elevated temperatures only. The orientation of the exo-cyclic hydroxymethyl group and the inductive effect are suggested to play a role in the rates of hydrolysis. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two dinuclear copper(II) complexes Li(H2O)(3)(CH3OH)](4)Cu2Br4]Cu-2(cpdp)(mu-O2CCH3)](4)(OH)(2) (1), Cu (H2O)(4)]Cu-2(cpdp)(mu-O2CC6H5)](2)Cl-2 center dot 5H(2)O (2), and a dinuclear zinc(II) complex Zn-2(cpdp)(mu-O2CCH3)] (3) have been synthesized using pyridine and benzoate functionality based new symmetrical dinucleating ligand, N, N'-Bis2-carboxybenzomethyl]-N, N'-Bis2-pyridylmethyl]-1,3-diaminopropan-2-ol (H(3)cpdp). Complexes 1, 2 and 3 have been synthesized by carrying out reaction of the ligand H3cpdp with stoichiometric amounts of Cu-2(O2CCH3)(4)(H2O)(2)], CuCl2 center dot 2H(2)O/C6H5COONa, and Zn(CH3COO)(2)center dot 2H(2)O, respectively, in methanol in the presence of NaOH at ambient temperature. Characterizations of the complexes have been done using various analytical techniques including single crystal X-ray structure determination. The X-ray crystal structure analyses reveal that the copper(II) ions in complexes 1 and 2 are in a distorted square pyramidal geometry with Cu-Cu separation of 3.455(8) angstrom and 3.492(1)angstrom, respectively. The DFT optimized structure of complex 3 indicates that two zinc(II) ions are in a distorted square pyramidal geometry with Zn-Zn separation of 3.492(8)angstrom. UV-Vis and mass spectrometric analyses of the complexes confirm their dimeric nature in solution. Furthermore, H-1 and C-13 NMR spectroscopic investigations authenticate the integrity of complex 3 in solution. Variable-temperature (2-300 K) magnetic susceptibility measurements show the presence of antiferromagnetic interactions between the copper centers, with J = -26.0 cm(-1) and -23.9 cm(-1) ((H) over cap = -2JS(1)S(2)) in complexes 1 and 2, respectively. In addition, glycosidase-like activity of the complexes has been investigated in aqueous solution at pH similar to 10.5 by UV-Vis spectrophotometric technique using p-nitrophenyl-alpha-D-glucopyranoside (4) and p-nitrophenyl-beta-D-glucopyranoside (5) as model substrates. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Helicobacter pylori MutS2 (HpMutS2), an inhibitor of recombination during transformation is a non-specific nuclease with two catalytic sites, both of which are essential for its anti-recombinase activity. Although HpMutS2 belongs to a highly conserved family of ABC transporter ATPases, the role of its ATP binding and hydrolysis activities remains elusive. Results: To explore the putative role of ATP binding and hydrolysis activities of HpMutS2 we specifically generated point mutations in the nucleotide-binding Walker-A (HpMutS2-G338R) and hydrolysis Walker-B (HpMutS2-E413A) domains of the protein. Compared to wild-type protein, HpMutS2-G338R exhibited similar to 2.5-fold lower affinity for both ATP and ADP while ATP hydrolysis was reduced by similar to 3-fold. Nucleotide binding efficiencies of HpMutS2-E413A were not significantly altered; however the ATP hydrolysis was reduced by similar to 10-fold. Although mutations in the Walker-A and Walker-B motifs of HpMutS2 only partially reduced its ability to bind and hydrolyze ATP, we demonstrate that these mutants not only exhibited alterations in the conformation, DNA binding and nuclease activities of the protein but failed to complement the hyper-recombinant phenotype displayed by mutS2-disrupted strain of H. pylori. In addition, we show that the nucleotide cofactor modulates the conformation, DNA binding and nuclease activities of HpMutS2. Conclusions: These data describe a strong crosstalk between the ATPase, DNA binding, and nuclease activities of HpMutS2. Furthermore these data show that both, ATP binding and hydrolysis activities of HpMutS2 are essential for the in vivo anti-recombinase function of the protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of gibbing process on the protein hydrolysis in terms of free alpha amino nitrogen (FAN) content during the ripening of barrel salted herring at low temperature (4°C) was investigated. For this purpose North Sea herring (Clupea harengus) from north-east British coast was salted in polypropylene barrels and allowed to ripen at 4°C. This process of barrel salting was carried out for whole fish in one batch and gibbed fish in another batch. The investigation was performed by using new salt and used salt in separate barrels for each batch of experimental fish. Results of the present study show that protein hydrolysis was significantly higher in the ripened salt-herring produced from whole fish which was found to have more characteristic sensory properties than those produced from gibbed fish. Similar result (proteolysis) was obtained when the investigation was repeated for the spent herring although the spent herring fails to produce a ripened product with the desired characteristic sensory attributes, compared to those of pre-spawning herring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrolytic changes in the lipids of mackerel (Rastrelliger kanagurta) during storage at -l8°C were studied with a view to understand the factors involved in the formation of free fatty acids. Only the phosphorylated fraction did undergo hydrolysis at an appreciable rate. It was found that the free fatty acid production was mainly associated with the phospholipid hydrolysis. As regards the triglycerides and unsaponifiable matter, there was no significant change in levels during frozen storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid hydrolysis and the nature of fatty acids lost as a result of lipid hydrolysis in milk fish (Chanos chanos) during frozen storage at -20°C is discussed in this paper. There was a preferential loss of saturated acids during the first three weeks of storage. This was followed by loss of polyunsaturated acids during the next seven weeks. Sharp decrease in the levels of monounsaturated acids was observed from the 10th week of frozen storage. These observations are due to the preferential hydrolysis of phospholipids with relatively high proportion of saturated acids during the first three weeks, followed by the hydrolysis of phospholipids with high proportions of polyunsaturated fatty acids from the 3rd to the 10th week, and finally, predominant hydrolysis of neutral lipids from the 10th week onwards. Storage of fish in the ice prior to freezing was found to accelerate lipid hydrolysis, especially that of neutral lipids, during frozen storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrolysis behaviors of polyferric sulfate (PFS) and ferric sulfate (FS) under conditions similar to raw wastewater were investigated and the coagulation of biologically pretreated molasses wastewater using PFS and FS was evaluated by studying coagulation efficiency, zeta potential and microscopic surface morphology of flocs. Experimental results show that the hydrolysis behavior of PFS is different from that of FS on the basis of ferron assay. In the case of FS, fast-reacting Fe(III) polymers were the dominant polynuclear species while large fraction of slow-reacting iron polymers is present in PFS. Despite slightly fewer dosages of PFS required as compared to FS, there is no marked difference in the coagulation of molasses effluent between PFS and FS, especially at the optimum dosages. Both coagulants destabilize organic compounds predominantly through charge neutralization-precipitation mechanism. Hydrolysis rate of PFS in synthetic solution is appreciably different from that in raw wastewater. This may due to the effect of sulfate anion introduced as counter-ion as well as depolymerization of larger polymeric Fe(III) species by the organic ligands present in molasses effluent.