980 resultados para X-ray double crystal diffraction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An (A1As/GaAs/A1As/A1GaAs)/GaAs(001) double-barrier superlattice grown by molecular beam epitaxy (MBE) is studied by combining synchrotron radiation and double-crystal x-ray diffraction (DCD). The intensity of satellite peaks is modulated by the wave function of each sublayer in one superlattice period. Simulated by the x-ray dynamical diffraction theory, it is discovered that the intensity of the satellite peaks situated near the modulating wave node point of each sublayer is very sensitive to the variation of the layer structural parameters, The accurate layer thickness of each sublayer is obtained with an error less than 1 Angstrom. Furthermore, x-ray kinematical diffraction theory is used to explain the modulation phenomenon. (C) 1996 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural and conformational properties of 1H-Isoindole-1,3(2H)-dione, 2-[(methoxycarbonyl)thio] (S-phthalimido O-methyl thiocarbonate) are analyzed using a combined approach including X-ray diffraction, vibrational spectra and theoretical calculation methods. The vibrational properties have been studied by infrared and Raman spectroscopies along with quantum chemical calculations (B3LYP and B3PW91 functional in connection with the 6-311++G** and aug-cc-pVDZ basis sets). The crystal structure was determined by X-ray diffraction methods. The substance crystallizes in the monoclinic P2(1)/c space group with a = 6.795(1), b = 5.109(1), c = 30.011(3) angstrom, beta = 90.310(3)degrees and Z = 4 molecules per unit cell. The conformation adopted by the N-S-C=O group is syn (C=O double bond in synperiplanar orientation with respect to the N-S single bond). The experimental molecular structure is well reproduced by the MP2/aug-cc-pVDZ method. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that protein crystallizability can be influenced by site-directed mutagenesis of residues on the molecular surface of proteins, indicating that the intermolecular interactions in crystal-packing regions may play a crucial role in the structural regularity at atomic resolution of protein crystals. Here, a systematic examination was made of the improvement in the diffraction resolution of protein crystals on introducing a single mutation of a crystal-packing residue in order to provide more favourable packing interactions, using diphthine synthase from Pyrococcus horikoshii OT3 as a model system. All of a total of 21 designed mutants at 13 different crystal-packing residues yielded almost isomorphous crystals from the same crystallization conditions as those used for the wild-type crystals, which diffracted X-rays to 2.1 angstrom resolution. Of the 21 mutants, eight provided crystals with an improved resolution of 1.8 angstrom or better. Thus, it has been clarified that crystal quality can be improved by introducing a suitable single mutation of a crystal-packing residue. In the improved crystals, more intimate crystal-packing interactions than those in the wild-type crystal are observed. Notably, the mutants K49R and T146R yielded crystals with outstandingly improved resolutions of 1.5 and 1.6 angstrom, respectively, in which a large-scale rearrangement of packing interactions was unexpectedly observed despite the retention of the same isomorphous crystal form. In contrast, the mutants that provided results that were in good agreement with the designed putative structures tended to achieve only moderate improvements in resolution of up to 1.75 angstrom. These results suggest a difficulty in the rational prediction of highly effective mutations in crystal engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is important to acquire the composition of Si1-xGex layer, especially that with high Ge content, epitaxied on Si substrate. Two nondestructive examination methods, double crystals X-ray diffraction (DCXRD) and micro-Raman measurement, were introduced comparatively to determine x value in Si1-xGex: layer, which show that while the two methods are consistent with each other when x is low, the results obtained from double crystals X-ray diffraction are not credible due to the large strain relaxation occurring in Si1-xGex layers when Ge content is higher than about 20%. Micro-Raman measurement is more appropriate for determining high Ge content than DCXRD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to understand the growth feature of GaN on GaAs (0 0 1) substrates grown by metalorganic chemical vapor deposition (MOCVD), the crystallinity of GaN buffer layers with different thicknesses was investigated by using double crystal X-ray diffraction (DCXRD) measurements. The XRD results showed that the buffer layers consist of predominantly hexagonal GaN (h-GaN) and its content increases with buffer layer thickness. The nominal GaN (111) reflections with chi at 54.74degrees can be detected easily, while (0 0 2) reflections are rather weak. The integrated intensity of reflections from (111) planes is 4-6 times that of (0 0 2) reflections. Possible explanations are presented. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method of measuring the thickness of GaN epilayers on sapphire (0 0 0 1) substrates by using double crystal X-ray diffraction was proposed. The ratio of the integrated intensity between the GaN epilayer and the sapphire substrate showed a linear relationship with the GaN epilayer thickness up to 2.12 mum. It is practical and convenient to measure the GaN epilayer thickness using this ratio, and can mostly eliminate the effect of the reabsorption, the extinction and other scattering factors of the GaN epilayers. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Being an established qualitative method for investigating presence of additional phases in single crystal materials, X-ray diffraction has been used widely to characterize their structural qualities and to improve the preparation techniques. Here quantitative X-ray diffraction analysis is described which takes into account diffraction geometry and multiplicity factors. Using double-crystal X-ray four-circle diffractometer, pole figures of cubic (002), {111} and hexagonal {10 (1) over bar0} and reciprocal space mapping were measured to investigate the structural characters of mixed phases and to obtain their diffraction geometry and multiplicity factors. The fractions of cubic twins and hexagonal inclusions were calculated by the integrated intensities of rocking curves of cubic (002), cubic twin {111}, hexagonal {10 (1) over bar0} and hexagonal {10 (1) over bar1}. Without multiplicity factors, the calculated results are portions of mixed phases in only one {111} plane of cubic GaN. Diffraction geometry factor can eliminate the effects of omega and X angles on the irradiated surface areas for different scattered planes. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ErSi1.7 layers with high crystalline quality (chi(min) of Er is 1.5%) have been formed by 90 keV Er ion implantation to a dose of 1.6X10(17)/cm(2) at 450 degrees C using channeled implantation. The perpendicular and parallel elastic strain e(perpendicular to)=-0.94%+/-0.02% and e(parallel to)=1.24%+/-0.08% of the heteroepitaxial erbium silicide layers have been measured with symmetric and asymmetric x-ray reflections using a double-crystal x-ray diffractometer. The deduced tetragonal distortion e(T(XRD))=e(parallel to)-e(perpendicular to)=2.18%+/-0.10%, which is consistent with the value e(T(RBS))2.14+/-0.17% deduced from the Rutherford backscattering and channeling measurements. The quasipseudomorphic growth of the epilayer and the stiffness along a and c axes of the epilayer deduced from the x-ray diffraction are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of X-ray powder data for the melt-crystallisable aromatic poly(thioether thioether ketone) [-S-Ar-S-Ar-CO-Ar](n), ('PTTK', Ar= 1,4-phenylene), reveals that it adopts a crystal structure very different from that established for its ether-analogue PEEK. Molecular modelling and diffraction-simulation studies of PTTK show that the structure of this polymer is analogous to that of melt-crystallised poly(thioetherketone) [-SAr-CO-Ar](n) in which the carbonyl linkages in symmetry-related chains are aligned anti-parallel to one another. and that these bridging units are crystallographically interchangeable. The final model for the crystal structure of PTTK is thus disordered, in the monoclinic space group 121a (two chains per unit cell), with cell dimensions a = 7.83, b = 6.06, c = 10.35 angstrom, beta = 93.47 degrees. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycondensation of 2,6-dihydroxynaphthalene with 4,4'-bis(4"-fluorobenzoyl)biphenyl affords a novel, semicrystalline poly(ether ketone) with a melting point of 406 degreesC and glass transition temperature (onset) of 168 degreesC. Molecular modeling and diffraction-simulation studies of this polymer, coupled with data from the single-crystal structure of an oligomer model, have enabled the crystal and molecular structure of the polymer to be determined from X-ray powder data. This structure-the first for any naphthalene-containing poly(ether ketone)-is fully ordered, in monoclinic space group P2(1)/b, with two chains per unit cell. Rietveld refinement against the experimental powder data gave a final agreement factor (R-wp) of 6.7%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex [(C(NH2)3)3ZrOH(CO3)3·H2O]2 (A) has been shown by means of a single crystal X-ray diffraction study to contain [C(NH2)3]+ cations and dimeric anions of formulation [(ZrOH(CO3)3)2]6−. The anion is centrosymmetric with each metal being bonded to two bridging OH groups and three chelating CO2−3 ions. The Zr atoms are thus eight coordinate with a dodecahedral environments. The ZrO distances formed by the bridgng OH groups are shorter than those formed through zirconiu carbonate interactions. The non-bonded Zr…Zr distance is 3.47(2) Å. An infrared spectroscopic investigation of A provides data which support the findings of the crystallographic study. Likewise the complex Na6(ZrOH(CO2O4)3)2·7H2O (B) contains the anion [(ZrOH(C2O4)3)2]6−. This anion is structurally related to the anion in A as each Zr atom has an eight-coordinate dodecahedral environment being bonded to two bridging OH groups and three chelating oxalate ligands, but has no imposed crysallographic symmetry. The Zr…Zr non-bonded distance is 3.50(1) Å. The OZrO bridge angles are 69.7(4)° and A and 67.4(3)° in B.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Gedunin compound (C28H34O6) is a natural product extracted from Trichilia pallida that has shown a wide activity. The crystallographic structure shows two conformers in the asymmetric unit, which differ in a rotation of the furan group. To understand this molecular arrangement, the density functional calculations. Molecular Electrostatic Potential (MEP) and thermodynamic function calculation have been performed at the B3LYP/6-311++g(d,p) level. Both conformers were optimized and the agreement with the experimental structure was very good, making possible further theoretical analysis of the structure. The inter-conversion between two conformers depends on the energy barrier. This process is studied in the vacuum and shows two transition states with a low energetic barrier for a potential energy curve scanning rigid around furan group: 4.37 kcal/mol and 16.52 kcal/mol. As the first transition state has a notably lower energetic barrier, the preferred inter-conversion pathway between the conformers involves the first rather than the second transition state. Understanding this transition state in detail led us to perform its optimization, showing an energetic barrier around 3.66 kcal/mol. The negative free energy and low enthalpy confirm that the process is spontaneous and exothermic. The results show that this requirement makes the existence of the two conformers in the asymmetric unit possible. The structure of molecules in the asymmetric unit is better understood when the MEP is used on the interaction between molecules. For Gedunin, both molecules have shown MEP with well-defined regions, and this behavior contributes to the observed link between molecules and for the negative regions complementing positive regions of another molecule. (C) 2011 Elsevier B.V. All rights reserved.