999 resultados para Wood chemistry
Resumo:
Sediment porewater oxygen profiles were measured with micro and needle electrodes in sediment cores of 27 stations in the Skagerrak (northeastern North Sea). Oxygen penetration depth ranged from 3 to 20 mm depth. Fluxes estimated from the oxygen gradients varied from 3 to 18 mmol m**-2 d**-1. Oxygen penetration and flux depend on water depth, but possibly more on the hydrological conditions, related to the import of fresh organic matter by primary production in the water column. Oxygen fluxes were not related to the total organic carbon (TOC) content of the sediments. Stations in the eastern part of the Skagerrak showed high burial rates of TOC. At 6 stations porewater chemistry of Fe, Mn and NO3- was strongly associated with the oxygen distribution. The average relative contribution of terminal electron acceptors to carbon mineralisation was estimated at 85% for O2, 0.5% for Mn, 4.5% for [NO3]3-, 1% for Fe and 9% for [SO4]2-. At one station the occurrence of exceptionally high solid manganese oxyhydroxides was probably related to an active internal manganese cycle.
Resumo:
The generation of heat due to the radioactive decay of plutonium in the form of plutonium dioxide stored in wooden containers is considered. The results of two experiments in which plutonium dioxide is placed inside wooden blocks and the temperature rise measured at various points is reported. Heat transfer calculations are then performed to show that the data obtained are those which would be expected, i.e., that Fourier's Law adequately describes the situation. The heat build up in a proposed wood moderated shipping container is calculated, using some of the assumptions verified in the described experiments.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliography.
Resumo:
"A William Wood book."
Resumo:
Phytochemical exploration of a wood bark extract from Durio zibethinus afforded two new triterpenoids, namely, methyl 27-O-trans-caffeoylcylicodiscate (1) and methyl 27-O-cis-caffeoylcylicodiscate (2), a new phenolic, 1,2-diarylpropane-3- ol (3), and seven known compounds, fraxidin, eucryphin, boehmenan, threo-carolignan E, (-)-(3R, 4S)-4-hydroxymellein, methyl protocatechuate, and (+)-(R)-de-O-methyllasiodiplodin (4). In addition, chemical analysis of a wood bark extract from Durio kutejensis yielded the new triterpenes 3 beta-O-trans-caffeoyl-2R-hydroxyolean-12-en-28-oic acid (5) and 3 beta-trans-caffeoyl-2R-hydroxytaraxest-12-en-28-oic acid (6) together with four known compounds, maslinic acid, arjunolic acid, 2,6-dimethoxy-p-benzoquinone, and fraxidin. The structures of all compounds were determined on the basis of spectroscopic data.
Resumo:
Little is known about historic wood as it ages naturally. Instead, most studies focus on biological decay, as it is often assumed that wood remains otherwise stable with age. This PhD project was organised by Historic Scotland and the University of Glasgow to investigate the natural chemical and physical aging of wood. The natural aging of wood was a concern for Historic Scotland as traditional timber replacement is the standard form of repair used in wooden cultural heritage; replacing rotten timber with new timber of the same species. The project was set up to look at what differences could exist both chemically and physically between old and new wood, which could put unforeseen stress on the joint between them. Through Historic Scotland it was possible to work with genuine historic wood from two species, Oak and Scots pine, both from the 1500’s, rather than relying on artificial aging. Artificial aging of wood is still a debated topic, with consideration given to whether it is truly mimicking the aging process or just damaging the wood cells. The chemical stability of wood was investigated using Fourier-transform infrared (FTIR) microscopy, as well as wet chemistry methods including a test for soluble sugars from the possible breakdown of the wood polymers. The physical properties assessed included using a tensile testing machine to uncover possible differences in mechanical properties. An environmental chamber was used to test the reaction to moisture of wood of different ages, as moisture is the most damaging aspect of the environment to wooden cultural objects. The project uncovered several differences, both physical and chemical, between the modern and historic wood which could affect the success of traditional ‘like for like’ repairs. Both oak and pine lost acetyl groups, over historic time, from their hemicellulose polymers. This chemical reaction releases acetic acid, which had no effect on the historic oak but was associated with reduced stiffness in historic pine, probably due to degradation of the hemicellulose polymers by acid hydrolysis. The stiffness of historic oak and pine was also reduced by decay. Visible pest decay led to loss of wood density but there was evidence that fungal decay, extending beyond what was visible, degraded the S2 layer of the pine cell walls, reducing the stiffness of the wood by depleting the cellulose microfibrils most aligned with the grain. Fungal decay of polysaccharides in pine wood left behind sugars that attracted increased levels of moisture. The degradation of essential polymers in the wood structure due to age had different impacts on the two species of wood, and raised questions concerning both the mechanism of aging of wood and the ways in which traditional repairs are implemented, especially in Scots pine. These repairs need to be done with more care and precision, especially in choosing new timber to match the old. Within this project a quantitative method of measuring the microfibril angle (MFA) of wood using polarised Fourier transform infrared (FTIR) microscopy has been developed, allowing the MFA of both new and historic pine to be measured. This provides some of the information needed for a more specific match when selecting replacement timbers for historic buildings.
Resumo:
Driven by the global trend in the sustainable economy development and environmental concerns, the exploring of plant-derived biomaterials or biocomposites for potential biomedical and/or pharmaceutical applications has received tremendous attention. Therefore, the work of this thesis is dedicated to high-value and high-efficiency utilization of plant-derived materials, with the focus on cellulose and hemicelluloses in the field of biomedical applications in a novel biorefinery concept. The residual cellulose of wood processing waste, sawdust, was converted into cellulose nanofibrils (CNFs) with tunable surface charge density and geometric size through 2,2,6,6-tetramethylpiperidinyloxy (TEMPO)-mediated oxidation and mechanical defibrillation. The sawdust-based CNFs and its resultant free-standing films showed comparable or even better mechanical properties than those from a commercial bleached kraft pulp at the same condition, demonstrating the feasibility of producing CNFs and films thereof with outstanding mechanical properties from birch sawdust by a process incorporated into a novel biorefinery platform recovering also polymeric hemicelluloses for other applications. Thus, it is providing an efficient route to upgrade sawdust waste to valuable products. The surface charge density and geometric size of the CNFs were found to play key roles in the stability of the CNF suspension, as well as the gelling properties, swelling behavior, mechanical stiffness, morphology and microscopic structural properties, and biocompatibility of CNF-based materials (i.e. films, hydrogels, and aerogels). The CNFs with tunable surface chemistry and geometric size was found promising applications as transparent and tough barrier materials or as reinforcing additive for production of biocomposites. The CNFs was also applied as structural matrices for the preparation of biocomposites possessing electrical conductivity and antimicrobial activity by in situ polymerization and coating of polypyrrole, and incorporation of silver nanoparticles, which make the material possible for potential wound healing application. The CNF-based matrices (films, hydrogels, and aerogels) with tunable structural and mechanical properties and biocompatibility were further prepared towards an application as 3D scaffolds in tissue engineering. The structural and mechanical strength of the CNF matrices could be tuned by controlling the charge density of the nanocellulose, as well as the pH and temperature values of the hydrogel formation conditions. Biological tests revealed that the CNF scaffolds could promote the survival and proliferation of tumor cells, and enhance the transfection of exogenous DNA into the cells, suggesting the usefulness of the CNF-based 3D matrices in supporting crucial cellular processes during cell growth and proliferation. The CNFs was applied as host materials to incorporate biomolecules for further biomedical application. For example, to investigate how the biocompatibility of a scaffold is influenced by its mechanical and structural properties, these properties of CNF-based composite matrices were controlled by incorporation of different hemicelluloses (O-acetyl galactoglucomanan (GGM), xyloglucan (XG), and xylan) into CNF hydrogel networks in different ratios and using two different approaches. The charge density of the CNFs, the incorporated hemicellulose type and amount, and the swelling time of the hydrogels were found to affect the pore structure, the mechanical strength, and thus the cells growth in the composite hydrogel scaffolds. The mechanical properties of the composite hydrogels were found to have an influence on the cell viability during the wound healing relevant 3T3 fibroblast cell culture. The thusprepared CNF composite hydrogels may work as promising scaffolds in wound healing application to provide supporting networks and to promote cells adhesion, growth, and proliferation.
Resumo:
Knowledge of particle emission characteristics associated with forest fires and in general, biomass burning, is becoming increasingly important due to the impact of these emissions on human health. Of particular importance is developing a better understanding of the size distribution of particles generated from forest combustion under different environmental conditions, as well as provision of emission factors for different particle size ranges. This study was aimed at quantifying particle emission factors from four types of wood found in South East Queensland forests: Spotted Gum (Corymbia citriodora), Red Gum (Eucalypt tereticornis), Blood Gum (Eucalypt intermedia), and Iron bark (Eucalypt decorticans); under controlled laboratory conditions. The experimental set up included a modified commercial stove connected to a dilution system designed for the conditions of the study. Measurements of particle number size distribution and concentration resulting from the burning of woods with a relatively homogenous moisture content (in the range of 15 to 26 %) and for different rates of burning were performed using a TSI Scanning Mobility Particle Sizer (SMPS) in the size range from 10 to 600 nm and a TSI Dust Trak for PM2.5. The results of the study in terms of the relationship between particle number size distribution and different condition of burning for different species show that particle number emission factors and PM2.5 mass emission factors depend on the type of wood and the burning rate; fast burning or slow burning. The average particle number emission factors for fast burning conditions are in the range of 3.3 x 1015 to 5.7 x 1015 particles/kg, and for PM2.5 are in the range of 139 to 217 mg/kg.
Resumo:
The soda process was the first chemical pulping method and was patented in 1845. Soda pulping led to kraft pulping, which involves the combined use of sodium hydroxide and sodium sulfide. Today, kraft pulping dominates the chemical pulping industry. However, about 10% of the total chemical pulp produced in the world is made using non-wood material, such as bagasse and wheat straw. The soda process is the preferred method of chemical pulping of non-wood materials, because it is considered to be economically viable on a small scale and for bagasse is compatible with sugarcane processing. With recent developments, the soda process can be designed to produce minimal effluent discharge and the fouling of evaporators by silica precipitation. The aim of this work is to produce bagasse fibres suitable for papermaking and allied applications and to produce sulfur-free lignin for use in specialty applications. A preliminary economic analysis of the soda process for producing commodity silica, lignin and pulp for papermaking is presented.