931 resultados para Visual robot control


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The motivation for this research initiated from the abrupt rise and fall of minicomputers which were initially used both for industrial automation and business applications due to their significantly lower cost than their predecessors, the mainframes. Later industrial automation developed its own vertically integrated hardware and software to address the application needs of uninterrupted operations, real-time control and resilience to harsh environmental conditions. This has led to the creation of an independent industry, namely industrial automation used in PLC, DCS, SCADA and robot control systems. This industry employs today over 200'000 people in a profitable slow clockspeed context in contrast to the two mainstream computing industries of information technology (IT) focused on business applications and telecommunications focused on communications networks and hand-held devices. Already in 1990s it was foreseen that IT and communication would merge into one Information and communication industry (ICT). The fundamental question of the thesis is: Could industrial automation leverage a common technology platform with the newly formed ICT industry? Computer systems dominated by complex instruction set computers (CISC) were challenged during 1990s with higher performance reduced instruction set computers (RISC). RISC started to evolve parallel to the constant advancement of Moore's law. These developments created the high performance and low energy consumption System-on-Chip architecture (SoC). Unlike to the CISC processors RISC processor architecture is a separate industry from the RISC chip manufacturing industry. It also has several hardware independent software platforms consisting of integrated operating system, development environment, user interface and application market which enables customers to have more choices due to hardware independent real time capable software applications. An architecture disruption merged and the smartphone and tablet market were formed with new rules and new key players in the ICT industry. Today there are more RISC computer systems running Linux (or other Unix variants) than any other computer system. The astonishing rise of SoC based technologies and related software platforms in smartphones created in unit terms the largest installed base ever seen in the history of computers and is now being further extended by tablets. An underlying additional element of this transition is the increasing role of open source technologies both in software and hardware. This has driven the microprocessor based personal computer industry with few dominating closed operating system platforms into a steep decline. A significant factor in this process has been the separation of processor architecture and processor chip production and operating systems and application development platforms merger into integrated software platforms with proprietary application markets. Furthermore the pay-by-click marketing has changed the way applications development is compensated: Three essays on major trends in a slow clockspeed industry: The case of industrial automation 2014 freeware, ad based or licensed - all at a lower price and used by a wider customer base than ever before. Moreover, the concept of software maintenance contract is very remote in the app world. However, as a slow clockspeed industry, industrial automation has remained intact during the disruptions based on SoC and related software platforms in the ICT industries. Industrial automation incumbents continue to supply systems based on vertically integrated systems consisting of proprietary software and proprietary mainly microprocessor based hardware. They enjoy admirable profitability levels on a very narrow customer base due to strong technology-enabled customer lock-in and customers' high risk leverage as their production is dependent on fault-free operation of the industrial automation systems. When will this balance of power be disrupted? The thesis suggests how industrial automation could join the mainstream ICT industry and create an information, communication and automation (ICAT) industry. Lately the Internet of Things (loT) and weightless networks, a new standard leveraging frequency channels earlier occupied by TV broadcasting, have gradually started to change the rigid world of Machine to Machine (M2M) interaction. It is foreseeable that enough momentum will be created that the industrial automation market will in due course face an architecture disruption empowered by these new trends. This thesis examines the current state of industrial automation subject to the competition between the incumbents firstly through a research on cost competitiveness efforts in captive outsourcing of engineering, research and development and secondly researching process re- engineering in the case of complex system global software support. Thirdly we investigate the industry actors', namely customers, incumbents and newcomers, views on the future direction of industrial automation and conclude with our assessments of the possible routes industrial automation could advance taking into account the looming rise of the Internet of Things (loT) and weightless networks. Industrial automation is an industry dominated by a handful of global players each of them focusing on maintaining their own proprietary solutions. The rise of de facto standards like IBM PC, Unix and Linux and SoC leveraged by IBM, Compaq, Dell, HP, ARM, Apple, Google, Samsung and others have created new markets of personal computers, smartphone and tablets and will eventually also impact industrial automation through game changing commoditization and related control point and business model changes. This trend will inevitably continue, but the transition to a commoditized industrial automation will not happen in the near future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Robotin ohjelmointi on aikaa vievää ja tarvitsee robotin ohjelmoinnin tuntevan operaattorin toimimaan robotin opettajana. Saadakseen robottisolun kustannustehokkaaksi operaattorilla olisi hyvä olla useampi solu hoidettavanaan samaan aikaan. Tämä ei ole suuri ongelma suurille yrityksille, joissa voi olla kymmeniä robottisoluja. Jos kyseessä on pieni tai keskisuuri yritys, automatisointi-investointi voi jäädä tekemättä ohjelmoinnin vaikeuden aiheuttaman ongelman vuoksi. Diplomityössä keskityttiin tutkimaan robotisointia pienten ja keskisuurten yritysten kannalta. Teoriaosassa on keskitytty robottisolun suunnittelun kannalta tarvittaviin perustietoihin robotin rakenteesta, ohjausjärjestelmästä, ohjelmoinnista sekä turvallisuudesta. Näiden perustietojen lisäksi on huomioitu hitsauksen automatisointia sekä taluttamalla ohjelmoitavan robottisolun tekninen konsepti. Taluttamalla ohjelmoitavan robottisolun konseptin käsittelyosassa on myös perehdytty taluttamalla ohjelmoinnin vaatimiin komponentteihin kuten voima/vääntö-anturi. Robottisolun suunnittelu on tehtävä koneasetuksen vaatimusten mukaan. Turvallisuus osiossa on käsitelty koneasetuksen vaatimuksia koneensuunnittelulle ja käytännön osassa on käsitelty Winnovan taluttamalla ohjelmoitavan robottisolun suunnittelua koneasetuksen ohjeiden mukaan. Käytännön osassa on tutkittu taluttamalla ohjelmoinnin tuomia etuja muihin ohjelmointimenetelmiin nähden sekä suoritettu investointilaskelmat taluttamalla ohjelmoitavasta ja opettamalla ohjelmoitavasta robottisolusta. Koetuloksista nähdään taluttamalla ohjelmoinnin olevan nopeampi ja yksinkertaisempi tapa ohjelmoida robottia kuin opettamalla ohjelmointi. Investointilaskelmien vertailusta nähdään taluttamalla ohjelmoinnin tulevan opettamalla ohjelmointia edullisemmaksi vaihtoehdoksi käyttökustannusten edullisuuden ansiosta.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Greenhouse studies were conducted in 2008-2009 with the objective of adjusting dose-response curves of the main soil-applied herbicides currently used in cotton for the control of Amaranthus viridis, A. hybridus, A. spinosus, A. lividus, as well as comparing susceptibility among different species, using the identity test models. Thirty six individual experiments were simultaneously carried out in greenhouse, in a sandy clay loam soil (21% clay, 2.36% OM) combining increasing doses of the herbicides alachlor, clomazone, diuron, oxyfluorfen, pendimethalin, prometryn, S-metolachlor, and trifluralin applied to each species. Dose-response curves were adjusted for visual weed control at 28 days after herbicide application and doses required for 80% (C80) and 95% (C95) control were calculated. All herbicides, except clomazone and trifluralin, provided efficient control of most Amaranthus species, but substantial differences in susceptibility to herbicides were found. In general, A. lividus was the least sensitive species, whereas A. spinosus demonstrated the highest sensitivity to herbicides. Alachlor, diuron, oxyfluorfen, pendimethalin, S-metolachlor, and prometryn are efficient alternatives to control Amaranthus spp. in a range of doses that are currently lower than those recommended to cotton.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The loss of motor function at the elbow joint can result as a consequence of stroke. Stroke is a clinical illness resulting in long lasting neurological deficits often affecting somatosensory and motor cortices. More than half of those that recover from a stroke survive with disability in their upper arm and need rehabilitation therapy to help in regaining functions of daily living. In this paper, we demonstrated a prototype of a low-cost, ultra-light and wearable soft robotic assistive device that could aid administration of elbow motion therapies to stroke patients. In order to assist the rotation of the elbow joint, the soft modules which consist of soft wedge-like cellular units was inflated by air to produce torque at the elbow joint. Highly compliant rotation can be naturally realised by the elastic property of soft silicone and pneumatic control of air. Based on the direct visual-actuation control, a higher control loop utilised visual processing to apply positional control, the lower control loop was implemented by an electronic circuit to achieve the desired pressure of the soft modules by Pulse Width Modulation. To examine the functionality of the proposed soft modular system, we used an anatomical model of the upper limb and performed the experiments with healthy participants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Com o intuito de utilizar uma rede com protocolo IP para a implementação de malhas fechadas de controle, este trabalho propõe-se a realizar um estudo da operação de um sistema de controle dinâmico distribuído, comparando-o com a operação de um sistema de controle local convencional. Em geral, a decisão de projetar uma arquitetura de controle distribuído é feita baseada na simplicidade, na redução dos custos e confiabilidade; portanto, um diferencial bastante importante é a utilização da rede IP. O objetivo de uma rede de controle não é transmitir dados digitais, mas dados analógicos amostrados. Assim, métricas usuais em redes de computadores, como quantidade de dados e taxa de transferências, tornam-se secundárias em uma rede de controle. São propostas técnicas para tratar os pacotes que sofrem atrasos e recuperar o desempenho do sistema de controle através da rede IP. A chave para este método é realizar a estimação do conteúdo dos pacotes que sofrem atrasos com base no modelo dinâmico do sistema, mantendo o sistema com um nível adequado de desempenho. O sistema considerado é o controle de um manipulador antropomórfico com dois braços e uma cabeça de visão estéreo totalizando 18 juntas. Os resultados obtidos mostram que se pode recuperar boa parte do desempenho do sistema.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To date, different techniques of navigation for mobile robots have been developed. However, the experimentation of these techniques is not a trivial task because usually it is not possible to reuse the developed control software due to system incompabilities. This paper proposes a software platform that provides means for creating reusable software modules through the standardization of software interfaces, which represent the various robot modules. © 2012 ICROS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Esta dissertação de mestrado apresenta o projeto e a construção de um robô móvel terrestre denominado LOGBOT, com tração de movimento do tipo diferencial – com duas rodas motoras e uma roda livre para manter a estabilidade de sua estrutura em relação à superfície. O controle do robô dispõe dos modos de telemetria e autônomo. No modo de controle por telemetria (ROV), a comunicação do robô com a estação de controle é feita por radiofreqüência a uma distância de até um quilometro em ambientes externos, e até cem metros em ambientes internos. No modo de controle autônomo (AGV), o robô tem habilidade para navegar em ambientes internos e desconhecidos usando sempre a parede à sua esquerda como referência para a trajetória de seu movimento. A seqüência de movimentos para execução da trajetória é enviada para a estação de controle que realiza análises de desempenho do robô. Para executar suas tarefas no modo autônomo, a programação do robô conta com um agente inteligente reativo, que detecta características do ambiente (obstáculos, final de paredes, etc.) e decide sobre qual atitude deve ser executada pelo robô, com objetivo de contornar os obstáculos e controlar a velocidade de suas rodas. Os problemas de erro odométrico e suas correções com base no uso de informações sensoriais externas são devidamente tratados. Técnicas de controle hierárquico do robô como um todo e controle em malha fechada da velocidade das rodas do robô são usadas. Os resultados mostraram que o robô móvel LOGBOT é capaz de navegar, com estabilidade e precisão, em ambientes internos no formato de um corredor (wall following).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of mobile robots turns out to be interesting in activities where the action of human specialist is difficult or dangerous. Mobile robots are often used for the exploration in areas of difficult access, such as rescue operations and space missions, to avoid human experts exposition to risky situations. Mobile robots are also used in agriculture for planting tasks as well as for keeping the application of pesticides within minimal amounts to mitigate environmental pollution. In this paper we present the development of a system to control the navigation of an autonomous mobile robot through tracks in plantations. Track images are used to control robot direction by pre-processing them to extract image features. Such features are then submitted to a support vector machine and an artificial neural network in order to find out the most appropriate route. A comparison of the two approaches was performed to ascertain the one presenting the best outcome. The overall goal of the project to which this work is connected is to develop a real time robot control system to be embedded into a hardware platform. In this paper we report the software implementation of a support vector machine and of an artificial neural network, which so far presented respectively around 93% and 90% accuracy in predicting the appropriate route. (C) 2013 The Authors. Published by Elsevier B.V. Selection and peer review under responsibility of the organizers of the 2013 International Conference on Computational Science

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of mobile robots in the agriculture turns out to be interesting in tasks of cultivation and application of pesticides in minute quantities to reduce environmental pollution. In this paper we present the development of a system to control an autonomous mobile robot navigation through tracks in plantations. Track images are used to control robot direction by preprocessing them to extract image features, and then submitting such characteristic features to a support vector machine to find out the most appropriate route. As the overall goal of the project to which this work is connected is the robot control in real time, the system will be embedded onto a hardware platform. However, in this paper we report the software implementation of a support vector machine, which so far presented around 93% accuracy in predicting the appropriate route.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The generality of findings implicating secondary auditory areas in auditory imagery was tested by using a timbre imagery task with fMRI. Another aim was to test whether activity in supplementary motor area (SMA) seen in prior studies might have been related to subvocalization. Participants with moderate musical background were scanned while making similarity judgments about the timbre of heard or imagined musical instrument sounds. The critical control condition was a visual imagery task. The pattern of judgments in perceived and imagined conditions was similar, suggesting that perception and imagery access similar cognitive representations of timbre. As expected, judgments of heard timbres, relative to the visual imagery control, activated primary and secondary auditory areas with some right-sided asymmetry. Timbre imagery also activated secondary auditory areas relative to the visual imagery control, although less strongly, in accord with previous data. Significant overlap was observed in these regions between perceptual and imagery conditions. Because the visual control task resulted in deactivation of auditory areas relative to a silent baseline, we interpret the timbre imagery effect as a reversal of that deactivation. Despite the lack of an obvious subvocalization component to timbre imagery, some activity in SMA was observed, suggesting that SMA may have a more general role in imagery beyond any motor component.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis deals with the challenging problem of designing systems able to perceive objects in underwater environments. In the last few decades research activities in robotics have advanced the state of art regarding intervention capabilities of autonomous systems. State of art in fields such as localization and navigation, real time perception and cognition, safe action and manipulation capabilities, applied to ground environments (both indoor and outdoor) has now reached such a readiness level that it allows high level autonomous operations. On the opposite side, the underwater environment remains a very difficult one for autonomous robots. Water influences the mechanical and electrical design of systems, interferes with sensors by limiting their capabilities, heavily impacts on data transmissions, and generally requires systems with low power consumption in order to enable reasonable mission duration. Interest in underwater applications is driven by needs of exploring and intervening in environments in which human capabilities are very limited. Nowadays, most underwater field operations are carried out by manned or remotely operated vehicles, deployed for explorations and limited intervention missions. Manned vehicles, directly on-board controlled, expose human operators to risks related to the stay in field of the mission, within a hostile environment. Remotely Operated Vehicles (ROV) currently represent the most advanced technology for underwater intervention services available on the market. These vehicles can be remotely operated for long time but they need support from an oceanographic vessel with multiple teams of highly specialized pilots. Vehicles equipped with multiple state-of-art sensors and capable to autonomously plan missions have been deployed in the last ten years and exploited as observers for underwater fauna, seabed, ship wrecks, and so on. On the other hand, underwater operations like object recovery and equipment maintenance are still challenging tasks to be conducted without human supervision since they require object perception and localization with much higher accuracy and robustness, to a degree seldom available in Autonomous Underwater Vehicles (AUV). This thesis reports the study, from design to deployment and evaluation, of a general purpose and configurable platform dedicated to stereo-vision perception in underwater environments. Several aspects related to the peculiar environment characteristics have been taken into account during all stages of system design and evaluation: depth of operation and light conditions, together with water turbidity and external weather, heavily impact on perception capabilities. The vision platform proposed in this work is a modular system comprising off-the-shelf components for both the imaging sensors and the computational unit, linked by a high performance ethernet network bus. The adopted design philosophy aims at achieving high flexibility in terms of feasible perception applications, that should not be as limited as in case of a special-purpose and dedicated hardware. Flexibility is required by the variability of underwater environments, with water conditions ranging from clear to turbid, light backscattering varying with daylight and depth, strong color distortion, and other environmental factors. Furthermore, the proposed modular design ensures an easier maintenance and update of the system over time. Performance of the proposed system, in terms of perception capabilities, has been evaluated in several underwater contexts taking advantage of the opportunity offered by the MARIS national project. Design issues like energy power consumption, heat dissipation and network capabilities have been evaluated in different scenarios. Finally, real-world experiments, conducted in multiple and variable underwater contexts, including open sea waters, have led to the collection of several datasets that have been publicly released to the scientific community. The vision system has been integrated in a state of the art AUV equipped with a robotic arm and gripper, and has been exploited in the robot control loop to successfully perform underwater grasping operations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A survey of the existing state-of-the-art of turbine blade manufacture highlights two operations that have not been automated namely that of loading of a turbine blade into an encapsulation die, and that of removing a machined blade from the encapsulation block. The automation of blade decapsulation has not been pursued. In order to develop a system to automate the loading of an encapsulation die a prototype mechanical handling robot has been designed together with a computer controlled encapsulation die. The robot has been designed as a mechanical handling robot of cylindrical geometry, suitable for use in a circular work cell. It is the prototype for a production model to be called `The Cybermate'. The prototype robot is mechanically complete but due to unforeseen circumstances the robot control system is not available (the development of the control system did not form a part of this project), hence it has not been possible to fully test and assess the robot mechanical design. Robot loading of the encapsulation die has thus been simulated. The research work with regard to the encapsulation die has focused on the development of computer controlled, hydraulically actuated, location pins. Such pins compensate for the inherent positional inaccuracy of the loading robot and reproduce the dexterity of the human operator. Each pin comprises a miniature hydraulic cylinder, controlled by a standard bidirectional flow control valve. The precision positional control is obtained through pulsing of the valves under software control, with positional feedback from an 8-bit transducer. A test-rig comprising one hydraulic location pin together with an opposing spring loaded pin has demonstrated that such a pin arrangement can be controlled with a repeatability of +/-.00045'. In addition this test-rig has demonstrated that such a pin arrangement can be used to gauge and compensate for the dimensional error of the component held between the pins, by offsetting the pin datum positions to allow for the component error. A gauging repeatability of +/- 0.00015' was demonstrated. This work has led to the design and manufacture of an encapsulation die comprising ten such pins and the associated computer software. All aspects of the control software except blade gauging and positional data storage have been demonstrated. Work is now required to achieve the accuracy of control demonstrated by the single pin test-rig, with each of the ten pins in the encapsulation die. This would allow trials of the complete loading cycle to take place.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main objective of this work was to enable the recognition of human gestures through the development of a computer program. The program created captures the gestures executed by the user through a camera attached to the computer and sends it to the robot command referring to the gesture. They were interpreted in total ve gestures made by human hand. The software (developed in C ++) widely used the computer vision concepts and open source library OpenCV that directly impact the overall e ciency of the control of mobile robots. The computer vision concepts take into account the use of lters to smooth/blur the image noise reduction, color space to better suit the developer's desktop as well as useful information for manipulating digital images. The OpenCV library was essential in creating the project because it was possible to use various functions/procedures for complete control lters, image borders, image area, the geometric center of borders, exchange of color spaces, convex hull and convexity defect, plus all the necessary means for the characterization of imaged features. During the development of the software was the appearance of several problems, as false positives (noise), underperforming the insertion of various lters with sizes oversized masks, as well as problems arising from the choice of color space for processing human skin tones. However, after the development of seven versions of the control software, it was possible to minimize the occurrence of false positives due to a better use of lters combined with a well-dimensioned mask size (tested at run time) all associated with a programming logic that has been perfected over the construction of the seven versions. After all the development is managed software that met the established requirements. After the completion of the control software, it was observed that the overall e ectiveness of the various programs, highlighting in particular the V programs: 84.75 %, with VI: 93.00 % and VII with: 94.67 % showed that the nal program performed well in interpreting gestures, proving that it was possible the mobile robot control through human gestures without the need for external accessories to give it a better mobility and cost savings for maintain such a system. The great merit of the program was to assist capacity in demystifying the man set/machine therefore uses an easy and intuitive interface for control of mobile robots. Another important feature observed is that to control the mobile robot is not necessary to be close to the same, as to control the equipment is necessary to receive only the address that the Robotino passes to the program via network or Wi-Fi.