924 resultados para Vesicular exanthema of swine
Resumo:
Foram utilizados 50 suínos machos castrados para avaliar o efeito da restrição alimentar qualitativa sobre a digestibilidade dos componentes dietéticos, os órgãos do trato digestório, a composição e a produção fecal. Foram utilizadas cinco dietas experimentais, com níveis de restrição qualitativa de 0, 5, 10, 15 e 20%. Houve redução linear (P<0,001) para todos os coeficientes de digestibilidade, com exceção da fibra em detergente ácido, que apresentou resposta quadrática (P<0,05). Os teores de sólidos totais (P<0,01) e voláteis (P<0,05), e minerais totais (P<0,001) nas fezes aumentaram com os níveis de restrição alimentar, enquanto os níveis de K (P<0,05), Cu (P<0,01) e de N, P, Na, Ca, Mg, Fe e Zn (P<0,001), apresentaram resposta quadrática. A excreção diária de fezes, sólidos totais e voláteis, minerais totais, N, P, K, Mn e Cu (P<0,001), Ca, Na, Mg e Fe (P<0,05) apresentaram aumento em função do nível da restrição alimentar qualitativa. A restrição qualitativa pode ser alternativa para destinação de resíduos da agroindústria, conferindo boas propriedades às fezes suínas, no que diz respeito à utilização para adubação de culturas.
Effect of fertilization in water quality and in zooplankton community in open plankton-culture ponds
Resumo:
The effect of swine manure fertilization on the water quality of zooplankton artificial culture in two ponds was measured in diel cycles on different months (October 1999, January and March 2000). Fertilization affected directly water quality; values for total phosphorus were above 1.4 mgL(-1) and maximum rates for ammonia reached 108 mu gL(-1). Zooplankton community comprised four species, namely, Brachionus calyciflorus, B. falcatus, Moina sp. and Thermocyclops sp. B. falcatus (Rotifera) and Moina sp (Cladocera) were dominant respectively in January and in March. There was no difference in abundance of zooplankton between the two ponds (p>0.05), although adult cyclopoid Thermocyclops sp was different between diel cycles (p<0.05). There were significant differences (p<0.05) in dissolved oxygen, ammonia, total phosphorus, orthophosphate, nitrite and nitrate between ponds. In fact, only dissolved oxygen and pH were significantly different (p<0.05) between the ponds' surface and bottom. Organic fertilization also provided greater amount of nutrients and higher pH and conductivity, coupled to greater oscillations in the concentration of dissolved oxygen, directly affecting the zooplanktonic composition.
Resumo:
Myxomatous mitral valve degeneration (MMVD) or endocardiosis is a heart valve disease that occurs in many mammalian species, especially in humans, dogs and pigs. Nitric oxide (NO) plays an important role in the MMVD development. NO can be indirectly evaluated by the nitric-oxide synthase (NOS) expression and by the histochemical reaction of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d). The aim of this study was to evaluate NOS activity, by NADPH-d reaction, in the anterior leaflet of dogs with regular mitral valves and in those with MMVD, as well as in young swine and old females, comparing the reaction level with the degree of endocardiosis disease and also the histological alterations. Twelve mitral valves of dogs and 22 of swine were used for the research. All the valves were macroscopically analyzed for the occurrence or not of endocardiosis. They were fixed in a 4% paraformaldehyde, exposed to NADPH-d reaction, routinely processed and microscopically evaluated for the detection of mucopolysaccharides (MPS) deposition, collagen degeneration, fibrosis and level of endocardiosis. In dogs, relation was observed between higher intensity of the NADPH-d reaction, higher endocardiosis degree, MPS deposition as well as the collagen degeneration. No alteration in color was observed in pigs ́ valves during NADPH-d reaction. In conclusion, NO works in canine mitral valve remodeling extracellular matrix and plays an important role in endocardiosis disease. In swine, the lack of reaction reinforces the absence of macroscopical endocardiosis lesions, suggesting restrict NO action or major differences in the structures of swine valves.
Resumo:
From the very beginning of Nebraska's agricultural development its farmers have recognized that the production of swine must of necessity accompany the growing of corn. The latter, one of the state's most important staples, cannot be marketed in a more economical manner than after having been transformed into pork, bacon, and lard. As a result the state has for many years maintained a rather dense swine population mainly divided into large herds kept on relatively small areas of land. This density of population, as well as certain practices in management and selective breeding, has brought about conditions favorable for the propagation of a number of microbic or parasitic diseases which, in a costly manner, force themselves to our attention. The various factors which affect the incidence of swine diseases are numerous and in a given situtation may be so intricately interwoven as to baffle the observer. This extension circular discusses these factors and how to prevent the spread throughout the swine population.
Resumo:
The porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important pathogen of swine and is known to cause abortion and infertility in pregnant sows and respiratory distress in piglets. PRRSV contains a major glycoprotein (GP5) and three minor glycoproteins (GP2a, GP3, and GP4) on the virion envelope, all of which are required for infectious virus production. To study their interactions amongst each other and with a cellular receptor for PRRSV, CD163, I cloned each of the viral glycoproteins and CD163 in various expression vectors. My studies have shown that while the GP2a, GP3, and GP4 are co-translationally glycosylated, the GP5 is post-translationally glycosylated. By using co-immunoprecipitation (co-IP) assays, strong interaction was demonstrated between GP4 and GP5 proteins, although weak interactions among the other envelope glycoproteins were also detected. Further, GP4 was found to mediate interactions leading to formation of multiprotein glycoprotein complex. My results also show that GP2a and GP4 proteins are the only two GPs that specifically interact with the CD163 molecule and that glycosylation of these GPs is required for efficient interaction. Based on these studies, I have developed an interactome map of the viral GPs and CD163 and have proposed a model of the viral glycoprotein complex and its interaction with CD163. Studies reported here also show that glycan addition at residue 184 (N184) of GP2a, and residues N42, N50, and N131 of GP3 is essential for recovery of infectious virus. Although single site glycosylation mutants of GP4 had no effect on infectious virus production, introduction of double mutations was lethal. The loss of glycan moieties of GP2a, GP3, and GP4 proteins had no effect on host neutralizing antibody production. Overall, I conclude that the PRRSV glycoproteins are co-translationally and post-translationally glycosylated, the GP4 protein is central to mediating interglycoprotein interactions, and along with GP2a, serves as the viral attachment protein that is responsible for interactions with the viral receptor, CD163. Further, glycosylation of GP2a, GP3, and GP4 proteins is required for infectious virus production, efficient interaction with CD163, but does not play any role in neutralizing antibody response in infected animals.
Resumo:
The corpus luteum (CL) lifespan is characterized by a rapid growth, differentiation and controlled regression of the luteal tissue, accompanied by an intense angiogenesis and angioregression. Indeed, the CL is one of the most highly vascularised tissue in the body with a proliferation rate of the endothelial cells 4- to 20-fold more intense than in some of the most malignant human tumours. This angiogenic process should be rigorously controlled to allow the repeated opportunities of fertilization. After a first period of rapid growth, the tissue becomes stably organized and prepares itself to switch to the phenotype required for its next apoptotic regression. In pregnant swine, the lifespan of the CLs must be extended to support embryonic and foetal development and vascularisation is necessary for the maintenance of luteal function. Among the molecules involved in the angiogenesis, Vascular Endothelial Growth Factor (VEGF) is the main regulator, promoting endothelial cells proliferation, differentiation and survival as well as vascular permeability and vessel lumen formation. During vascular invasion and apoptosis process, the remodelling of the extracellular matrix is essential for the correct evolution of the CL, particularly by the action of specific class of proteolytic enzymes known as matrix metalloproteinases (MMPs). Another important factor that plays a role in the processes of angiogenesis and angioregression during the CL formation and luteolysis is the isopeptide Endothelin-1 (ET-1), which is well-known to be a potent vasoconstrictor and mitogen for endothelial cells. The goal of the present thesis was to study the role and regulation of vascularisation in an adult vascular bed. For this purpose, using a precisely controlled in vivo model of swine CL development and regression, we determined the levels of expression of the members of VEGF system (VEGF total and specific isoforms; VEGF receptor-1, VEGFR-1; VEGF receptor-2, VEGFR-2) and ET- 1 system (ET-1; endothelin converting enzyme-1, ECE-1; endothelin receptor type A, ET-A) as well as the activity of the Ca++/Mg++-dependent endonucleases and gelatinases (MMP-2 and MMP-9). Three experiments were conducted to reach such objectives in CLs isolated from ovaries of cyclic, pregnant or fasted gilts. In the Experiment I, we evaluated the influence of acute fasting on VEGF production and VEGF, VEGFR-2, ET-1, ECE-1 and ET-A mRNA expressions in CLs collected on day 6 after ovulation (midluteal phase). The results indicated a down-regulation of VEGF, VEGFR-2, ET-1 and ECE-1 mRNA expression, although no change was observed for VEGF protein. Furthermore, we observed that fasting stimulated steroidogenesis by luteal cells. On the basis of the main effects of VEGF (stimulation of vessel growth and endothelial permeability) and ET-1 (stimulation of endothelial cell proliferation and vasoconstriction, as well as VEGF stimulation), we concluded that feed restriction possibly inhibited luteal vessel development. This could be, at least in part, compensated by a decrease of vasal tone due to a diminution of ET-1, thus ensuring an adequate blood flow and the production of steroids by the luteal cells. In the Experiment II, we investigated the relationship between VEGF, gelatinases and Ca++/Mg++-dependent endonucleases activities with the functional CL stage throughout the oestrous cycle and at pregnancy. The results demonstrated differential patterns of expression of those molecules in correspondence to the different phases of the oestrous cycle. Immediately after ovulation, VEGF mRNA/protein levels and MMP-9 activity are maximal. On days 5–14 after ovulation, VEGF expression and MMP-2 and -9 activities are at basal levels, while Ca++/Mg++-dependent endonuclease levels increased significantly in relation to day 1. Only at luteolysis (day 17), Ca++/Mg++-dependent endonuclease and MMP-2 spontaneous activity increased significantly. At pregnancy, high levels of MMP-9 and VEGF were observed. These results suggested that during the very early luteal phase, high MMPs activities coupled with high VEGF levels drive the tissue to an angiogenic phenotype, allowing CL growth under LH (Luteinising Hormone) stimulus, while during the late luteal phase, low VEGF and elevate MMPs levels may play a role in the apoptotic tissue and extracellular matrix remodelling during structural luteolysis. In the Experiment III, we described the expression patterns of all distinct VEGF isoforms throughout the oestrous cycle. Furthermore, the mRNA expression and protein levels of both VEGF receptors were also evaluated. Four novel VEGF isoforms (VEGF144, VEGF147, VEGF182, and VEGF164b) were found for the first time in swine and the seven identified isoforms presented four different patterns of expression. All isoforms showed their highest mRNA levels in newly formed CLs (day 1), followed by a decrease during mid-late luteal phase (days 10–17), except for VEGF182, VEGF188 and VEGF144 that showed a differential regulation during late luteal phase (day 14) or at luteolysis (day 17). VEGF protein levels paralleled the most expressed and secreted VEGF120 and VEGF164 isoforms. The VEGF receptors mRNAs showed a different pattern of expression in relation to their ligands, increasing between day 1 and 3 and gradually decreasing during the mid-late luteal phase. The differential regulation of some VEGF isoforms principally during the late luteal phase and luteolysis suggested a specific role of VEGF during tissue remodelling process that occurs either for CL maintenance in case of pregnancy or for noncapillary vessel development essential for tissue removal during structural luteolysis. In summary, our findings allow us to determine relationships among factors involved in the angiogenesis and angioregression mechanisms that take place during the formation and regression of the CL. Thus, CL provides a very interesting model for studying such factors in different fields of the basic research.
Resumo:
This current work focused on the simulation of in vivo dissolution and permeation in order to be able to predict the in vivo performance of orally administered fenofibrate immediate release formulations. Therefore, the effects of the formulation surfactants on in vivo solubility and permeation of fenofibrate under physiologically relevant excipient concentrations were emphasized.rnIt was shown that the surfactant sodium dodecyl sulfate (SDS) may decrease rather than increase the solubility of fenofibrate in vivo. This was related to the interference of SDS with the vesicular system of the biorelevant medium, FaSSIFmod, and therefore its solubilization capacity. rnMoreover, in vitro permeation studies revealed that SDS concentrations inversely correlated with fenofibrate permeability. Through combination of the observed permeation and solubility data a good in vitro/in vivo correlation regarding Cmax values in humans could be established for five fenofibrate formulations which were based on the same manufacturing technique.rnBesides the experimental part, the major characteristics and their potential implementation in a dissolution/permeation device were discussed based on the promising realization of the in vitro solubility and permeation methods. rn
Resumo:
Parasitic wasps attack a number of insect species on which they feed, either externally or internally. This requires very effective strategies for suppressing the immune response and a finely tuned interference with the host physiology that is co-opted for the developing parasitoid progeny. The wealth of physiological host alterations is mediated by virulence factors encoded by the wasp or, in some cases, by polydnaviruses (PDVs), unique viral symbionts injected into the host at oviposition along with the egg, venom and ovarian secretions. PDVs are among the most powerful immunosuppressors in nature, targeting insect defense barriers at different levels. During my PhD research program I have used Drosophila melanogaster as a model to expand the functional analysis of virulence factors encoded by PDV focusing on the molecular processes underlying the disruption of the host endocrine system. I focused my research on a member of the ankyrin (ank) gene family, an immunosuppressant found in bracovirus, which associates with the parasitic wasp Toxoneuron nigriceps. I found that ankyrin disrupts ecdysone biosynthesis by impairing the vesicular traffic of ecdysteroid precursors in the cells of the prothoracic gland and results in developmental arrest.
Resumo:
A novel virus, designated swine hepatitis E virus (swine HEV), was identified in pigs. Swine HEV crossreacts with antibody to the human HEV capsid antigen. Swine HEV is a ubiquitous agent and the majority of swine ≥3 months of age in herds from the midwestern United States were seropositive. Young pigs naturally infected by swine HEV were clinically normal but had microscopic evidence of hepatitis, and developed viremia prior to seroconversion. The entire ORFs 2 and 3 were amplified by reverse transcription–PCR from sera of naturally infected pigs. The putative capsid gene (ORF2) of swine HEV shared about 79–80% sequence identity at the nucleotide level and 90–92% identity at the amino acid level with human HEV strains. The small ORF3 of swine HEV had 83–85% nucleotide sequence identity and 77–82% amino acid identity with human HEV strains. Phylogenetic analyses showed that swine HEV is closely related to, but distinct from, human HEV strains. The discovery of swine HEV not only has implications for HEV vaccine development, diagnosis, and biology, but also raises a potential public health concern for zoonosis or xenozoonosis following xenotransplantation with pig organs.
Resumo:
Syntaxin 1, synaptobrevins or vesicle-associated membrane proteins, and the synaptosome-associated protein of 25 kDa (SNAP-25) are key molecules involved in the docking and fusion of synaptic vesicles with the presynaptic membrane. We report here the molecular, cell biological, and biochemical characterization of a 32-kDa protein homologous to both SNAP-25 (20% amino acid sequence identity) and the recently identified SNAP-23 (19% amino acid sequence identity). Northern blot analysis shows that the mRNA for this protein is widely expressed. Polyclonal antibodies against this protein detect a 32-kDa protein present in both cytosol and membrane fractions. The membrane-bound form of this protein is revealed to be primarily localized to the Golgi apparatus by indirect immunofluorescence microscopy, a finding that is further established by electron microscopy immunogold labeling showing that this protein is present in tubular-vesicular structures of the Golgi apparatus. Biochemical characterizations establish that this protein behaves like a SNAP receptor and is thus named Golgi SNARE of 32 kDa (GS32). GS32 in the Golgi extract is preferentially retained by the immobilized GST–syntaxin 6 fusion protein. The coimmunoprecipitation of syntaxin 6 but not syntaxin 5 or GS28 from the Golgi extract by antibodies against GS32 further sustains the preferential interaction of GS32 with Golgi syntaxin 6.
Resumo:
By using perfusions and bolus administration, coupled with postembedding immunocytochemical procedures, we have identified the structures involved in the transport of derivatized orosomucoid (α1-acidic glycoprotein) across the continuous microvascular endothelium of the murine myocardium. Our findings indicate that: (i) monomeric orosomucoid binds to the luminal surface of the endothelium; (ii) it is restricted to caveolae during its transport across the endothelium; (iii) it is detected in the perivascular spaces at early time points (by 1 min) and in larger quantities at later time points (>5 min) from the beginning of its perfusion or its intravascular administration; (iv) no orosomucoid molecules are found in the intercellular junctions or at the abluminal exits of interendothelial spaces; and (v) the vesicular transport of orosomucoid is strongly inhibited by N-ethylmaleimide (>80%). Because, by size and shape, the orosomucoid qualifies as a preferential probe for the postulated small pore system, our results are discussed in relation to the pore theory of capillary permeability.
Resumo:
In myocardial ischemia, adrenergic nerves release excessive amounts of norepinephrine (NE), causing dysfunction and arrhythmias. With anoxia and the concomitant ATP depletion, vesicular storage of NE is impaired, resulting in accumulation of free NE in the axoplasm of sympathetic nerves. Intraneuronal acidosis activates the Na+/H+ exchanger (NHE), leading to increased Na+ entry in the nerve terminals. These conditions favor availability of the NE transporter to the axoplasmic side of the membrane, causing massive carrier-mediated efflux of free NE. Neuronal NHE activation is pivotal in this process; NHE inhibitors attenuate carrier-mediated NE release. We previously reported that activation of histamine H3 receptors (H3R) on cardiac sympathetic nerves also reduces carrier-mediated NE release and alleviates arrhythmias. Thus, H3R activation may be negatively coupled to NHE. We tested this hypothesis in individual human SKNMC neuroblastoma cells stably transfected with H3R cDNA, loaded with the intracellular pH (pHi) indicator BCECF. These cells possess amiloride-sensitive NHE. NHE activity was measured as the rate of Na+-dependent pHi recovery in response to an acute acid pulse (NH4Cl). We found that the selective H3R-agonist imetit markedly diminished NHE activity, and so did the amiloride derivative EIPA. The selective H3R antagonist thioperamide abolished the imetit-induced NHE attenuation. Thus, our results provide a link between H3R and NHE, which may limit the excessive release of NE during protracted myocardial ischemia. Our previous and present findings uncover a novel mechanism of cardioprotection: NHE inhibition in cardiac adrenergic neurons as a means to prevent ischemic arrhythmias associated with carrier-mediated NE release.
Resumo:
Investigation of swine plague -- Investigation of southern cattle fever -- Contagious lung plague of cattle -- Miscellaneous -- Correspondence.
Resumo:
Continuation of Special reports no. 12 and 22. No. 12 entitled: Investigation of diseases of swine [etc.]
Resumo:
Cells dying by apoptosis are normally cleared by phagocytes through mechanisms that can suppress inflammation and immunity. Molecules of the innate immune system, the pattern recognition receptors (PRRs), are able to interact not only with conserved structures on microbes (pathogen-associated molecular patterns, PAMPs) but also with ligands displayed by apoptotic cells. We reasoned that PRRs might therefore interact with structures on apoptotic cells-apoptotic cell-associated molecular patterns (ACAMPs)-that are analogous to PAMPs. Here we show that certain monoclonal antibodies raised against the prototypic PAMP, lipopolysaccharide (LPS), can crossreact with apoptotic cells. We demonstrate that one such antibody interacts with a constitutively expressed intracellular protein, laminin-binding protein, which translocates to the cell surface during apoptosis and can interact with cells expressing the prototypic PRR, mCD14 as well as with CD14-negative cells. Anti-LPS cross reactive epitopes on apoptotic cells colocalised with annexin V-and C1q-binding sites on vesicular regions of apoptotic cell surfaces and were released associated with apoptotic cell-derived microvesicles (MVs). These results confirm that apoptotic cells and microbes can interact with the immune system through common elements and suggest that anti-PAMP antibodies could be used strategically to characterise novel ACAMPs associated not only with apoptotic cells but also with derived MVs. © 2013 Macmillan Publishers Limited All rights reserved.