993 resultados para Valence state
Resumo:
Pós-graduação em Química - IQ
Resumo:
Bi3.25La0.75-xErxTi3O12 and Bi3.25La0.75Ti3-xErxO12-delta ceramics were prepared and studied in this work in terms of dopant-induced phase and microstructure development as well as dielectric response. The results show that introduction of Er3+ tends to reduce the materials' sintering temperature and average grain size. Moreover, it was noted that in these systems the substitution site of this dopant is controlled by valence state and ionic radii mismatch effects. In particular, even when a nominal substitution of Ti4+ is conceived, here it is found that Er3+ also incorporates at the (Bi,La)(3+) sites. These and other interesting concluding remarks from this work, including Er3+ tolerance, were possible only after comparing, especially, the X-ray diffraction results and the intrinsic ferroelectric characteristics extracted from the dielectric measurements. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Supramolecular chemistry is a multidisciplinary field which impinges on other disciplines, focusing on the systems made up of a discrete number of assembled molecular subunits. The forces responsible for the spatial organization are intermolecular reversible interactions. The supramolecular architectures I was interested in are Rotaxanes, mechanically-interlocked architectures consisting of a "dumbbell shaped molecule", threaded through a "macrocycle" where the stoppers at the end of the dumbbell prevent disassociation of components and catenanes, two or more interlocked macrocycles which cannot be separated without breaking the covalent bonds. The aim is to introduce one or more paramagnetic units to use the ESR spectroscopy to investigate complexation properties of these systems cause this technique works in the same time scale of supramolecular assemblies. Chapter 1 underlines the main concepts upon which supramolecular chemistry is based, clarifying the nature of supramolecular interactions and the principles of host-guest chemistry. In chapter 2 it is pointed out the use of ESR spectroscopy to investigate the properties of organic non-covalent assemblies in liquid solution by spin labels and spin probes. The chapter 3 deals with the synthesis of a new class of p-electron-deficient tetracationic cyclophane ring, carrying one or two paramagnetic side-arms based on 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) moiety. In the chapter 4, the Huisgen 1,3-dipolar cycloaddition is exploited to synthesize rotaxanes having paramagnetic cyclodextrins as wheels. In the chapter 5, the catalysis of Huisgen’s cycloaddition by CB[6] is exploited to synthesize paramagnetic CB[6]-based [3]-rotaxanes. In the chapter 6 I reported the first preliminary studies of Actinoid series as a new class of templates in catenanes’ synthesis. Being f-block elements, so having the property of expanding the valence state, they constitute promising candidates as chemical templates offering the possibility to create a complex with coordination number beyond 6.
Resumo:
The membrane protein Cytochrome c Oxidase (CcO) is one of the most important functional bio-molecules. It appears in almost every eukaryotic cell and many bacteria. Although the different species differ in the number of subunits, the functional differences are merely marginal. CcO is the terminal link in the electron transfer pathway of the mitochondrial respiratory chain. Electrons transferred to the catalytic center of the enzyme conduce to the reduction of molecular oxygen to water. Oxygen reduction is coupled to the pumping of protons into the inter-membrane space and hence generates a difference in electrochemical potential of protons across the inner mitochondrial membrane. This potential difference drives the synthesis of adenosine triphosphate (ATP), which is the universal energy carrier within all biological cells. rnrnThe goal of the present work is to contribute to a better understanding of the functional mechanism of CcO by using time-resolved surface enhanced resonance Raman spectroscopy (TR-SERRS). Despite intensive research effort within the last decades, the functional mechanism of CcO is still subject to controversial discussions. It was the primary goal of this dissertation to initiate electron transfer to the redox centers CuA, heme a, heme a3 and CuB electrochemically and to observe the corresponding redox transitions in-situ with a focus on the two heme structures by using SERRS. A measuring cell was developed, which allowed combination of electrochemical excitation with Raman spectroscopy for the purpose of performing the accordant measurements. Cytochrome c was used as a benchmark system to test the new measuring cell and to prove the feasibility of appropriate Raman measurements. In contrast to CcO the heme protein cc contains only a single heme structure. Nevertheless, characteristic Raman bands of the hemes can be observed for both proteins.rnrnIn order to investigate CcO it was immobilized on top of a silver substrate and embedded into an artificial membrane. The catalytic activity of CcO and therefore the complete functional capability of the enzyme within the biomimetic membrane architecture was verified using cyclic voltammetry. Raman spectroscopy was performed using a special nano-structured silver surface, which was developed within the scope of the present work. This new substrate combined two fundamental properties. It facilitated the formation of a protein tethered bilayer lipid membrane (ptBLM) and it allowed obtaining Raman spectra with sufficient high signal-to-noise ratios.rnSpectro-electrochemical investigations showed that at open circuit potential the enzyme exists in a mixed-valence state, with heme a and and heme a3 in the reduced and oxidized state, respectively. This was considered as an intermediate state between the non-activated and the fully activated state of CcO. Time-resolved SERRS measurements revealed that a hampered electron transfer to the redox center heme a3 characterizes this intermediate state.rn
Resumo:
Eutectic temperature and composition in the CuO–TiO2 pseudobinary system have been experimentally determined in air by means differential thermal analysis (DTA), thermogravimetry (TG) and hot-stage microscopy (HSM). Samples of the new eutectic composition treated at different temperatures have been characterized by X-ray diffraction (XRD) and X-ray absorption near-edge structural spectroscopy (XANES) to identify phases and to determine the Cu valence state, respectively. The results show that the eutectic temperature in air is higher by 100 °C (∼1000 °C) for a Ti-richer composition (XTiO2=25 mol%) than the one calculated in the literature. The reduction of Cu2+ to Cu+ takes places at about 1030 °C. The existence of Cu2TiO3 and Cu3TiO4 has been confirmed by XRD in the temperature range between 1045 and 1200 °C.
Resumo:
In this paper strontium-site-deficient Sr2Fe1.4Co0.1Mo0.5O6-δ-based perovskite oxides (SxFCM) were prepared and evaluated as the cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). All samples exhibited a cubic phase structure and the lattice shrinked with increasing the Sr-deficiency as shown in XRD patterns. XPS results determined that the transition elements (Co/Fe/Mo) in SxFCM oxides were in a mixed valence state, demonstrating the small polaron hopping conductivity mechanism existed. Among the samples, S1.950FCM presented the lowest coefficient of thermal expansion of 15.62 × 10-6 K-1, the highest conductivity value of 28 S cm-1 at 500 °C, and the lowest interfacial polarization resistance of 0.093 Ω cm2 at 800 °C, respectively. Furthermore, an anode-supported single cell with a S1.950FCM cathode was prepared, demonstrating a maximum power density of 1.16 W cm-2 at 800 °C by using wet H2 (3% H2O) as the fuel and ambient air as the oxidant. These results indicate that the introduction of Sr-deficiency can dramatically improve the electrochemical performance of Sr2Fe1.4Co0.1Mo0.5O6-δ, showing great promise as a novel cathode candidate material for IT-SOFCs.
Resumo:
Cross sections for double photoionization of the Ne L shell into the 2s2p{^5 3}P^0} and ^1P^0 and the 2s^02p^6 ^1S^e states were measured for energies from threshold up to 150 eV, using photon induced fluorescence spectroscopy. Both 2s2p^5 channels were observed with comparable magnitude in contradiction to a propensity rule based on the Wannier-Peterkop-Rau theory. A comparison of the summed ^3P^0 and ^1P^0 cross sections with MBPT calculations results in a deviation of 50%.
Resumo:
Visible pump-probe spectroscopy has been used to identify and characterize short-lived metal-to-metal charge transfer (MMCT) excited states in a group of cyano-bridged mixed-valence complexes of the formula [(LCoNCMII)-N-III(CN)(5)](-), where L is a pentadentate macrocyclic pentaamine (L-14) or triamine-dithiaether (L-14S) and M is Fe or Ru. Nanosecond pump-probe spectroscopy on frozen solutions of [(LCoNCFeII)-Co-14-N-III(CN)(5)](-) and [(LCoNCFeII)-Co-14S-N-III(CN)(5)](-) at 11 K enabled the construction of difference transient absorption spectra that featured a rise in absorbance in the region of 350-400 nm consistent with the generation of the ferricyanide chromophore of the photoexcited complex. The MMCT excited state of the Ru analogue [(LCoNCRuII)-Co-14-N-III(CN)(5)](-) was too short-lived to allow its detection. Femtosecond pump-probe spectroscopy on aqueous solutions of [(LCoNCFeII)-Co-14-N-III(CN)(5)](-) and [(LCoNCFeII)-Co-14S-N-III(CN)(5)](-) at room temperature enabled the lifetimes of their Co-II-Fe-III MMCT excited states to be determined as 0.8 and 1.3 ps, respectively.
Resumo:
A series of 7 cerium double-decker complexes with various tetrapyrrole ligands including porphyrinates, phthalocyaninates, and 2,3-naphthalocyaninates have been prepared by previously described methodologies and characterized with elemental analysis and a range of spectroscopic methods. The molecular structures of two heteroleptic \[(na)phthalocyaninato](porphyrinato) complexes have also been determined by X-ray diffraction analysis which exhibit a slightly distorted square antiprismatic geometry with two domed ligands. Having a range of tetrapyrrole ligands with very different electronic properties, these compounds have been systematically investigated for the effects of ligands on the valence of the cerium center. On the basis of the spectroscopic (UV−vis, near-IR, IR, and Raman), electrochemical, and structural data of these compounds and compared with those of the other rare earth(III) counterparts reported earlier, it has been found that the cerium center adopts an intermediate valence in these complexes. It assumes a virtually trivalent state in cerium bis(tetra-tert-butylnaphthalocyaninate) as a result of the two electron rich naphthalocyaninato ligands, which facilitate the delocalization of electron from the ligands to the metal center. For the rest of the cerium double-deckers, the cerium center is predominantly tetravalent. The valences (3.59−3.68) have been quantified according to their LIII-edge X-ray absorption near-edge structure (XANES) profiles.
Resumo:
We report a theoretical study of the multiple oxidation states (1+, 0, 1−, and 2−) of a meso,meso-linked diporphyrin, namely bis[10,15,20-triphenylporphyrinatozinc(II)-5-yl]butadiyne (4), using Time-Dependent Density Functional Theory (TDDFT). The origin of electronic transitions of singlet excited states is discussed in comparison to experimental spectra for the corresponding oxidation states of the close analogue bis{10,15,20-tris[3‘,5‘-di-tert-butylphenyl]porphyrinatozinc(II)-5-yl}butadiyne (3). The latter were measured in previous work under in situ spectroelectrochemical conditions. Excitation energies and orbital compositions of the excited states were obtained for these large delocalized aromatic radicals, which are unique examples of organic mixed-valence systems. The radical cations and anions of butadiyne-bridged diporphyrins such as 3 display characteristic electronic absorption bands in the near-IR region, which have been successfully predicted with use of these computational methods. The radicals are clearly of the “fully delocalized” or Class III type. The key spectral features of the neutral and dianionic states were also reproduced, although due to the large size of these molecules, quantitative agreement of energies with observations is not as good in the blue end of the visible region. The TDDFT calculations are largely in accord with a previous empirical model for the spectra, which was based simplistically on one-electron transitions among the eight key frontier orbitals of the C4 (1,4-butadiyne) linked diporphyrins.
Resumo:
He II photoelectron spectra of La, Ce and Yb show features which cannot be explained in terms of single electron excitations. It is proposed that these are due to formation of electron-hole paris.
Resumo:
3d and 4d core-level XPS spectra for CePd3, a mixed-valence system, have been measured. Each spectrum exhibits two sets of structures, each corresponding to one of the valence states of cerium. Thus the usefulness of XPS, which has so far not been used extensively to investigate the mixed-valence cerium systems, is pointed out.
Resumo:
Accurate extrapolations for the ground state energy per site of the one - dimensional Kondo chain system is obtained from exact finite system calculations carried out employing a valence bond scheme. An analysis of the ground state wave function indicates that the localized spin is quenched for all nonzero values of the Kondo exchange constant in one dimension.
Resumo:
Single-phase LaNi1-xMnxO3 samples in the compositional range 0
Resumo:
There is intense activity in the area of theoretical chemistry of gold. It is now possible to predict new molecular species, and more recently, solids by combining relativistic methodology with isoelectronic thinking. In this thesis we predict a series of solid sheet-type crystals for Group-11 cyanides, MCN (M=Cu, Ag, Au), and Group-2 and 12 carbides MC2 (M=Be-Ba, Zn-Hg). The idea of sheets is then extended to nanostrips which can be bent to nanorings. The bending energies and deformation frequencies can be systematized by treating these molecules as an elastic bodies. In these species Au atoms act as an 'intermolecular glue'. Further suggested molecular species are the new uncongested aurocarbons, and the neutral Au_nHg_m clusters. Many of the suggested species are expected to be stabilized by aurophilic interactions. We also estimate the MP2 basis-set limit of the aurophilicity for the model compounds [ClAuPH_3]_2 and [P(AuPH_3)_4]^+. Beside investigating the size of the basis-set applied, our research confirms that the 19-VE TZVP+2f level, used a decade ago, already produced 74 % of the present aurophilic attraction energy for the [ClAuPH_3]_2 dimer. Likewise we verify the preferred C4v structure for the [P(AuPH_3)_4]^+ cation at the MP2 level. We also perform the first calculation on model aurophilic systems using the SCS-MP2 method and compare the results to high-accuracy CCSD(T) ones. The recently obtained high-resolution microwave spectra on MCN molecules (M=Cu, Ag, Au) provide an excellent testing ground for quantum chemistry. MP2 or CCSD(T) calculations, correlating all 19 valence electrons of Au and including BSSE and SO corrections, are able to give bond lengths to 0.6 pm, or better. Our calculated vibrational frequencies are expected to be better than the currently available experimental estimates. Qualitative evidence for multiple Au-C bonding in triatomic AuCN is also found.