Synthetic strategies of new molecular paramagnetic mechanically-interlocked complexes


Autoria(s): Casati, Costanza
Contribuinte(s)

Lucarini, Marco

Data(s)

12/04/2011

Resumo

Supramolecular chemistry is a multidisciplinary field which impinges on other disciplines, focusing on the systems made up of a discrete number of assembled molecular subunits. The forces responsible for the spatial organization are intermolecular reversible interactions. The supramolecular architectures I was interested in are Rotaxanes, mechanically-interlocked architectures consisting of a "dumbbell shaped molecule", threaded through a "macrocycle" where the stoppers at the end of the dumbbell prevent disassociation of components and catenanes, two or more interlocked macrocycles which cannot be separated without breaking the covalent bonds. The aim is to introduce one or more paramagnetic units to use the ESR spectroscopy to investigate complexation properties of these systems cause this technique works in the same time scale of supramolecular assemblies. Chapter 1 underlines the main concepts upon which supramolecular chemistry is based, clarifying the nature of supramolecular interactions and the principles of host-guest chemistry. In chapter 2 it is pointed out the use of ESR spectroscopy to investigate the properties of organic non-covalent assemblies in liquid solution by spin labels and spin probes. The chapter 3 deals with the synthesis of a new class of p-electron-deficient tetracationic cyclophane ring, carrying one or two paramagnetic side-arms based on 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) moiety. In the chapter 4, the Huisgen 1,3-dipolar cycloaddition is exploited to synthesize rotaxanes having paramagnetic cyclodextrins as wheels. In the chapter 5, the catalysis of Huisgen’s cycloaddition by CB[6] is exploited to synthesize paramagnetic CB[6]-based [3]-rotaxanes. In the chapter 6 I reported the first preliminary studies of Actinoid series as a new class of templates in catenanes’ synthesis. Being f-block elements, so having the property of expanding the valence state, they constitute promising candidates as chemical templates offering the possibility to create a complex with coordination number beyond 6.

Formato

application/pdf

Identificador

http://amsdottorato.unibo.it/3778/1/Casati_Costanza_tesi.pdf

urn:nbn:it:unibo-2676

Casati, Costanza (2011) Synthetic strategies of new molecular paramagnetic mechanically-interlocked complexes, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze farmaceutiche <http://amsdottorato.unibo.it/view/dottorati/DOT302/>, 23 Ciclo. DOI 10.6092/unibo/amsdottorato/3778.

Idioma(s)

it

Publicador

Alma Mater Studiorum - Università di Bologna

Relação

http://amsdottorato.unibo.it/3778/

Direitos

info:eu-repo/semantics/openAccess

Palavras-Chave #CHIM/06 Chimica organica
Tipo

Tesi di dottorato

NonPeerReviewed