1000 resultados para VEHICULAR EMISSION
Resumo:
Homo-and heteronuclear meso,meso-(E)-ethene-1,2-diyl-linked diporphyrins have been prepared by the Suzuki coupling of porphyrinylboronates and iodovinylporphyrins. Combinations comprising 5,10,15-triphenylporphyrin (TriPP) on both ends of the ethene-1,2-diyl bridge M 210 (M 2=H 2/Ni, Ni 2, Ni/Zn, H 4, H 2Zn, Zn 2) and 5,15-bis(3,5-di-tert-butylphenyl)porphyrinato-nickel(II) on one end and H 2, Ni, and ZnTriPP on the other (M 211), enable the first studies of this class of compounds possessing intrinsic polarity. The compounds were characterized by electronic absorption and steady state emission spectra, 1H NMR spectra, and for the Ni 2 bis(TriPP) complex Ni 210, single crystal X-ray structure determination. The crystal structure shows ruffled distortions of the porphyrin rings, typical of Ni II porphyrins, and the (E)-C 2H 2 bridge makes a dihedral angle of 50° with the mean planes of the macrocycles. The result is a stepped parallel arrangement of the porphyrin rings. The dihedral angles in the solid state reflect the interplay of steric and electronic effects of the bridge on interporphyrin communication. The emission spectra in particular, suggest energy transfer across the bridge is fast in conformations in which the bridge is nearly coplanar with the rings. Comparisons of the fluorescence behaviour of H 410 and H 2Ni10 show strong quenching of the free base fluorescence when the complex is excited at the lower energy component of the Soret band, a feature associated in the literature with more planar conformations. TDDFT calculations on the gas-phase optimized geometry of Ni 210 reproduce the features of the experimental electronic absorption spectrum within 0.1 eV. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Serving as a powerful tool for extracting localized variations in non-stationary signals, applications of wavelet transforms (WTs) in traffic engineering have been introduced; however, lacking in some important theoretical fundamentals. In particular, there is little guidance provided on selecting an appropriate WT across potential transport applications. This research described in this paper contributes uniquely to the literature by first describing a numerical experiment to demonstrate the shortcomings of commonly-used data processing techniques in traffic engineering (i.e., averaging, moving averaging, second-order difference, oblique cumulative curve, and short-time Fourier transform). It then mathematically describes WT’s ability to detect singularities in traffic data. Next, selecting a suitable WT for a particular research topic in traffic engineering is discussed in detail by objectively and quantitatively comparing candidate wavelets’ performances using a numerical experiment. Finally, based on several case studies using both loop detector data and vehicle trajectories, it is shown that selecting a suitable wavelet largely depends on the specific research topic, and that the Mexican hat wavelet generally gives a satisfactory performance in detecting singularities in traffic and vehicular data.
Resumo:
This paper presents an experimental investigation into the detection of excessive Diesel knock using acoustic emission signals. Three different dual-fuel Diesel engine operating regimes were induced into a compression ignition (Diesel) engine operating on both straight Diesel fuel and two different mixtures of fumigated ethanol and Diesel. The experimentally induced engine operating regimes were; normal, or Diesel only operation, acceptable dual-fuel operation and dual-fuel operation with excessive Diesel knock. During the excessive Diesel knock operating regime, high rates of ethanol substitution induced potentially damaging levels of Diesel knock. Acoustic emission data was captured along with cylinder pressure, crank-angle encoder, and top-dead centre signals for the different engine operating regimes. Using these signals, it was found that acoustic emission signals clearly distinguished between the two acceptable operating regimes and the operating regime experiencing excessive Diesel knock. It was also found that acoustic emission sensor position is critical. The acoustic emission sensor positioned on the block of the engine clearly related information concerning the level of Diesel knock occurring in the engine whist the sensor positioned on the head of the engine gave no indication concerning Diesel knock severity levels.
Resumo:
This paper discusses commonly encountered diesel engine problems and the underlying combustion related faults. Also discussed are the methods used in previous studies to simulate diesel engine faults and the initial results of an experimental simulation of a common combustion related diesel engine fault, namely diesel engine misfire. This experimental fault simulation represents the first step towards a comprehensive investigation and analysis into the characteristics of acoustic emission signals arising from combustion related diesel engine faults. Data corresponding to different engine running conditions was captured using in-cylinder pressure, vibration and acoustic emission transducers along with both crank-angle encoder and top-dead centre signals. Using these signals, it was possible to characterise the diesel engine in-cylinder pressure profiles and the effect of different combustion conditions on both vibration and acoustic emission signals.
Resumo:
Acoustic emission (AE) analysis is one of the several diagnostic techniques available nowadays for structural health monitoring (SHM) of engineering structures. Some of its advantages over other techniques include high sensitivity to crack growth and capability of monitoring a structure in real time. The phenomenon of rapid release of energy within a material by crack initiation or growth in form of stress waves is known as acoustic emission (AE). In AE technique, these stress waves are recorded by means of suitable sensors placed on the surface of a structure. Recorded signals are subsequently analysed to gather information about the nature of the source. By enabling early detection of crack growth, AE technique helps in planning timely retrofitting or other maintenance jobs or even replacement of the structure if required. In spite of being a promising tool, some challenges do still exist behind the successful application of AE technique. Large amount of data is generated during AE testing, hence effective data analysis is necessary, especially for long term monitoring uses. Appropriate analysis of AE data for quantification of damage level is an area that has received considerable attention. Various approaches available for damage quantification for severity assessment are discussed in this paper, with special focus on civil infrastructure such as bridges. One method called improved b-value analysis is used to analyse data collected from laboratory testing.
Electricity market equilibrium of thermal and wind generating plants in emission trading environment
Resumo:
Acoustic emission (AE) is the phenomenon where stress waves are generated due to rapid release of energy within a material caused by sources such as crack initiation or growth. AE technique involves recording the stress waves by means of sensors and subsequent analysis of the recorded signals to gather information about the nature of the source. Though AE technique is one of the popular non destructive evaluation (NDE) techniques for structural health monitoring of mechanical, aerospace and civil structures; several challenges still exist in successful application of this technique. Presence of spurious noise signals can mask genuine damage‐related AE signals; hence a major challenge identified is finding ways to discriminate signals from different sources. Analysis of parameters of recorded AE signals, comparison of amplitudes of AE wave modes and investigation of uniqueness of recorded AE signals have been mentioned as possible criteria for source differentiation. This paper reviews common approaches currently in use for source discrimination, particularly focusing on structural health monitoring of civil engineering structural components such as beams; and further investigates the applications of some of these methods by analyzing AE data from laboratory tests.
Resumo:
Structural health monitoring (SHM) refers to the procedure used to assess the condition of structures so that their performance can be monitored and any damage can be detected early. Early detection of damage and appropriate retrofitting will aid in preventing failure of the structure and save money spent on maintenance or replacement and ensure the structure operates safely and efficiently during its whole intended life. Though visual inspection and other techniques such as vibration based ones are available for SHM of structures such as bridges, the use of acoustic emission (AE) technique is an attractive option and is increasing in use. AE waves are high frequency stress waves generated by rapid release of energy from localised sources within a material, such as crack initiation and growth. AE technique involves recording these waves by means of sensors attached on the surface and then analysing the signals to extract information about the nature of the source. High sensitivity to crack growth, ability to locate source, passive nature (no need to supply energy from outside, but energy from damage source itself is utilised) and possibility to perform real time monitoring (detecting crack as it occurs or grows) are some of the attractive features of AE technique. In spite of these advantages, challenges still exist in using AE technique for monitoring applications, especially in the area of analysis of recorded AE data, as large volumes of data are usually generated during monitoring. The need for effective data analysis can be linked with three main aims of monitoring: (a) accurately locating the source of damage; (b) identifying and discriminating signals from different sources of acoustic emission and (c) quantifying the level of damage of AE source for severity assessment. In AE technique, the location of the emission source is usually calculated using the times of arrival and velocities of the AE signals recorded by a number of sensors. But complications arise as AE waves can travel in a structure in a number of different modes that have different velocities and frequencies. Hence, to accurately locate a source it is necessary to identify the modes recorded by the sensors. This study has proposed and tested the use of time-frequency analysis tools such as short time Fourier transform to identify the modes and the use of the velocities of these modes to achieve very accurate results. Further, this study has explored the possibility of reducing the number of sensors needed for data capture by using the velocities of modes captured by a single sensor for source localization. A major problem in practical use of AE technique is the presence of sources of AE other than crack related, such as rubbing and impacts between different components of a structure. These spurious AE signals often mask the signals from the crack activity; hence discrimination of signals to identify the sources is very important. This work developed a model that uses different signal processing tools such as cross-correlation, magnitude squared coherence and energy distribution in different frequency bands as well as modal analysis (comparing amplitudes of identified modes) for accurately differentiating signals from different simulated AE sources. Quantification tools to assess the severity of the damage sources are highly desirable in practical applications. Though different damage quantification methods have been proposed in AE technique, not all have achieved universal approval or have been approved as suitable for all situations. The b-value analysis, which involves the study of distribution of amplitudes of AE signals, and its modified form (known as improved b-value analysis), was investigated for suitability for damage quantification purposes in ductile materials such as steel. This was found to give encouraging results for analysis of data from laboratory, thereby extending the possibility of its use for real life structures. By addressing these primary issues, it is believed that this thesis has helped improve the effectiveness of AE technique for structural health monitoring of civil infrastructures such as bridges.
Resumo:
Digital information that is place- and time-specific, is increasingly becoming available on all aspects of the urban landscape. People (cf. the Social Web), places (cf. the Geo Web), and physical objects (cf. ubiquitous computing, the Internet of Things) are increasingly infused with sensors, actuators, and tagged with a wealth of digital information. Urban informatics research explores these emerging digital layers of the city at the intersection of people, place and technology. However, little is known about the challenges and new opportunities that these digital layers may offer to road users driving through today’s mega cities. We argue that this aspect is worth exploring in particular with regards to Auto-UI’s overarching goal of making cars both safer and more enjoyable. This paper presents the findings of a pilot study, which included 14 urban informatics research experts participating in a guided ideation (idea creation) workshop within a simulated environment. They were immersed into different driving scenarios to imagine novel urban informatics type of applications specific to the driving context.
Resumo:
Road traffic accidents can be reduced by providing early warning to drivers through wireless ad hoc networks. When a vehicle detects an event that may lead to an imminent accident, the vehicle disseminates emergency messages to alert other vehicles that may be endangered by the accident. In many existing broadcast-based dissemination schemes, emergency messages may be sent to a large number of vehicles in the area and can be propagated to only one direction. This paper presents a more efficient context aware multicast protocol that disseminates messages only to endangered vehicles that may be affected by the emergency event. The endangered vehicles can be identified by calculating the interaction among vehicles based on their motion properties. To ensure fast delivery, the dissemination follows a routing path obtained by computing a minimum delay tree. The multicast protocol uses a generalized approach that can support any arbitrary road topology. The performance of the multicast protocol is compared with existing broadcast protocols by simulating chain collision accidents on a typical highway. Simulation results show that the multicast protocol outperforms the other protocols in terms of reliability, efficiency, and latency.
Resumo:
Vehicular safety applications, such as cooperative collision warning systems, rely on beaconing to provide situational awareness that is needed to predict and therefore to avoid possible collisions. Beaconing is the continual exchange of vehicle motion-state information, such as position, speed, and heading, which enables each vehicle to track its neighboring vehicles in real time. This work presents a context-aware adaptive beaconing scheme that dynamically adapts the beaconing repetition rate based on an estimated channel load and the danger severity of the interactions among vehicles. The safety, efficiency, and scalability of the new scheme is evaluated by simulating vehicle collisions caused by inattentive drivers under various road traffic densities. Simulation results show that the new scheme is more efficient and scalable, and is able to improve safety better than the existing non-adaptive and adaptive rate schemes.
Resumo:
In March 2008, the Australian Government announced its intention to introduce a national Emissions Trading Scheme (ETS), now expected to start in 2015. This impending development provides an ideal setting to investigate the impact an ETS in Australia will have on the market valuation of Australian Securities Exchange (ASX) firms. This is the first empirical study into the pricing effects of the ETS in Australia. Primarily, we hypothesize that firm value will be negatively related to a firm's carbon intensity profile. That is, there will be a greater impact on firm value for high carbon emitters in the period prior (2007) to the introduction of the ETS, whether for reasons relating to the existence of unbooked liabilities associated with future compliance and/or abatement costs, or for reasons relating to reduced future earnings. Using a sample of 58 Australian listed firms (constrained by the current availability of emissions data) which comprise larger, more profitable and less risky listed Australian firms, we first undertake an event study focusing on five distinct information events argued to impact the probability of the proposed ETS being enacted. Here, we find direct evidence that the capital market is indeed pricing the proposed ETS. Second, using a modified version of the Ohlson (1995) valuation model, we undertake a valuation analysis designed not only to complement the event study results, but more importantly to provide insights into the capital market's assessment of the magnitude of the economic impact of the proposed ETS as reflected in market capitalization. Here, our results show that the market assesses the most carbon intensive sample firms a market value decrement relative to other sample firms of between 7% and 10% of market capitalization. Further, based on the carbon emission profile of the sample firms we imply a ‘future carbon permit price’ of between AUD$17 per tonne and AUD$26 per tonne of carbon dioxide emitted. This study is more precise than industry reports, which set a carbon price of between AUD$15 to AUD$74 per tonne.
Resumo:
Two different morphologies of nanotextured molybdenum oxide were deposited by thermal evaporation. By measuring their field emission (FE) properties, an enhancement factor was extracted. Subsequently, these films were coated with a thin layer of Pt to form Schottky contacts. The current-voltage (I-V) characteristics showed low magnitude reverse breakdown voltages, which we attributed to the localized electric field enhancement. An enhancement factor was obtained from the I-V curves. We will show that the enhancement factor extracted from the I-V curves is in good agreement with the enhancement factor extracted from the FE measurements.