950 resultados para Upper-atmosphere
Resumo:
This note describes a simple procedure for removing unphysical temporal discontinuities in ERA-Interim upper stratospheric global mean temperatures in March 1985 and August 1998 that have arisen due to changes in satellite radiance data used in the assimilation. The derived temperature adjustments (offsets) are suitable for use in stratosphere-resolving chemistry-climate models that are nudged (relaxed) to ERA-Interim winds and temperatures. Simulations using a nudged version of the Canadian Middle Atmosphere Model (CMAM) show that the inclusion of the temperature adjustments produces temperature time series that are devoid of the large jumps in 1985 and 1998. Due to its strong temperature dependence, the simulated upper stratospheric ozone is also shown to vary smoothly in time, unlike in a nudged simulation without the adjustments where abrupt changes in ozone occur at the times of the temperature jumps. While the adjustments to the ERA-Interim temperatures remove significant artefacts in the nudged CMAM simulation, spurious transient effects that arise due to water vapour and persist for about 5 yr after the 1979 switch to ERA-Interim data are identified, underlining the need for caution when analysing trends in runs nudged to reanalyses.
Resumo:
The current study discusses new opportunities for secure ground to satellite communications using shaped femtosecond pulses that induce spatial hole burning in the atmosphere for efficient communications with data encoded within super-continua generated by femtosecond pulses. Refractive index variation across the different layers in the atmosphere may be modelled using assumptions that the upper strata of the atmosphere and troposphere behaving as layered composite amorphous dielectric networks composed of resistors and capacitors with different time constants across each layer. Input-output expressions of the dynamics of the networks in the frequency domain provide the transmission characteristics of the propagation medium. Femtosecond pulse shaping may be used to optimize the pulse phase-front and spectral composition across the different layers in the atmosphere. A generic procedure based on evolutionary algorithms to perform the pulse shaping is proposed. In contrast to alternative procedures that would require ab initio modelling and calculations of the propagation constant for the pulse through the atmosphere, the proposed approach is adaptive, compensating for refractive index variations along the column of air between the transmitter and receiver.
Resumo:
The Madden-Julian oscillation (MJO) is a convectively coupled 30-70 day (intraseasonal) tropical atmospheric mode that drives variations in global weather, but which is poorly simulated in most atmospheric general circulation models. Over the past two decades, field campaigns and modeling experiments have suggested that tropical atmosphere-ocean interactions may sustain or amplify the pattern of enhanced and suppressed atmospheric convection that defines the MJO, and encourage its eastward propagation through the Indian and Pacific Oceans. New observations collected during the past decade have advanced our understand of the ocean response to atmospheric MJO forcing and the resulting intraseasonal sea surface temperature (SST) fluctuations. Numerous modeling studies have revealed a considerable impact of the mean state on MJO ocean-atmosphere coupled processes, as well as the importance of resolving the diurnal cycle of atmosphere--upper-ocean interactions. New diagnostic methods provide insight to atmospheric variability and physical processes associated with the MJO, but offer limited insight on the role of ocean feedbacks. Consequently, uncertainty remains concerning the role of the ocean in MJO theory. Our understanding of how atmosphere-ocean coupled processes affect the MJO can be improved by collecting observations in poorly sampled regions of MJO activity, assessing oceanic and atmospheric drivers of surface fluxes, improving the representation of upper-ocean mixing in coupled-model simulations, designing model experiments that minimize mean-state differences, and developing diagnostic tools to evaluate the nature and role of coupled ocean-atmosphere processes over the MJO cycle.
Resumo:
In this work, the Cloud Feedback Model Intercomparison (CFMIP) Observation Simulation Package (COSP) is expanded to include scattering and emission effects of clouds and precipitation at passive microwave frequencies. This represents an advancement over the official version of COSP (version 1.4.0) in which only clear-sky brightness temperatures are simulated. To highlight the potential utility of this new microwave simulator, COSP results generated using the climate model EC-Earth's version 3 atmosphere as input are compared with Microwave Humidity Sounder (MHS) channel (190.311 GHz) observations. Specifically, simulated seasonal brightness temperatures (TB) are contrasted with MHS observations for the period December 2005 to November 2006 to identify possible biases in EC-Earth's cloud and atmosphere fields. The EC-Earth's atmosphere closely reproduces the microwave signature of many of the major large-scale and regional scale features of the atmosphere and surface. Moreover, greater than 60 % of the simulated TB are within 3 K of the NOAA-18 observations. However, COSP is unable to simulate sufficiently low TB in areas of frequent deep convection. Within the Tropics, the model's atmosphere can yield an underestimation of TB by nearly 30 K for cloudy areas in the ITCZ. Possible reasons for this discrepancy include both incorrect amount of cloud ice water in the model simulations and incorrect ice particle scattering assumptions used in the COSP microwave forward model. These multiple sources of error highlight the non-unique nature of the simulated satellite measurements, a problem exacerbated by the fact that EC-Earth lacks detailed micro-physical parameters necessary for accurate forward model calculations. Such issues limit the robustness of our evaluation and suggest a general note of caution when making COSP-satellite observation evaluations.
Resumo:
The composition of the atmosphere is frequently perturbed by the emission of gaseous and particulate matter from natural as well as anthropogenic sources. While the impact of trace gases on the radiative forcing of the climate is relatively well understood the role of aerosol is far more uncertain. Therefore, the study of the vertical distribution of particulate matter in the atmosphere and its chemical composition contribute valuable information to bridge this gap of knowledge. The chemical composition of aerosol reveals information on properties such as radiative behavior and hygroscopicity and therefore cloud condensation or ice nucleus potential. rnThis thesis focuses on aerosol pollution plumes observed in 2008 during the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) campaign over Greenland in June/July and CONCERT (Contrail and Cirrus Experiment) campaign over Central and Western Europe in October/November. Measurements were performed with an Aerodyne compact time-of-flight aerosol mass spectrometer (AMS) capable of online size-resolved chemical characterization of non-refractory submicron particles. In addition, the origins of pollution plumes were determined by means of modeling tools. The characterized pollution episodes originated from a large variety of sources and were encountered at distinct altitudes. They included pure natural emissions from two volcanic eruptions in 2008. By the time of detection over Western Europe between 10 and 12 km altitude the plume was about 3 months old and composed to 71 % of particulate sulfate and 21 % of carbonaceous compounds. Also, biomass burning (BB) plumes were observed over Greenland between 4 and 7 km altitude (free troposphere) originating from Canada and East Siberia. The long-range transport took roughly one and two weeks, respectively. The aerosol was composed of 78 % organic matter and 22 % particulate sulfate. Some Canadian and all Siberian BB plumes were mixed with anthropogenic emissions from fossil fuel combustion (FF) in North America and East Asia. It was found that the contribution of particulate sulfate increased with growing influences from anthropogenic activity and Asia reaching up to 37 % after more than two weeks of transport time. The most exclusively anthropogenic emission source probed in the upper troposphere was engine exhaust from commercial aircraft liners over Germany. However, in-situ characterization of this aerosol type during aircraft chasing was not possible. All long-range transport aerosol was found to have an O:C ratio close to or greater than 1 implying that low-volatility oxygenated organic aerosol was present in each case despite the variety of origins and the large range in age from 3 to 100 days. This leads to the conclusion that organic particulate matter reaches a final and uniform state of oxygenation after at least 3 days in the free troposphere. rnExcept for aircraft exhaust all emission sources mentioned above are surface-bound and thus rely on different types of vertical transport mechanisms, such as direct high altitude injection in the case of a volcanic eruption, or severe BB, or uplift by convection, to reach higher altitudes where particles can travel long distances before removal mainly caused by cloud scavenging. A lifetime for North American mixed BB and FF aerosol of 7 to 11 days was derived. This in consequence means that emission from surface point sources, e.g. volcanoes, or regions, e.g. East Asia, do not only have a relevant impact on the immediate surroundings but rather on a hemispheric scale including such climate sensitive zones as the tropopause or the Arctic.
Resumo:
The Measurements of Humidity in the Atmosphere and Validation Experiment (MOHAVE) 2009 campaign took place on 11–27 October 2009 at the JPL Table Mountain Facility in California (TMF). The main objectives of the campaign were to (1) validate the water vapor measurements of several instruments, including, three Raman lidars, two microwave radiometers, two Fourier-Transform spectrometers, and two GPS receivers (column water), (2) cover water vapor measurements from the ground to the mesopause without gaps, and (3) study upper tropospheric humidity variability at timescales varying from a few minutes to several days. A total of 58 radiosondes and 20 Frost-Point hygrometer sondes were launched. Two types of radiosondes were used during the campaign. Non negligible differences in the readings between the two radiosonde types used (Vaisala RS92 and InterMet iMet-1) made a small, but measurable impact on the derivation of water vapor mixing ratio by the Frost-Point hygrometers. As observed in previous campaigns, the RS92 humidity measurements remained within 5% of the Frost-point in the lower and mid-troposphere, but were too dry in the upper troposphere. Over 270 h of water vapor measurements from three Raman lidars (JPL and GSFC) were compared to RS92, CFH, and NOAA-FPH. The JPL lidar profiles reached 20 km when integrated all night, and 15 km when integrated for 1 h. Excellent agreement between this lidar and the frost-point hygrometers was found throughout the measurement range, with only a 3% (0.3 ppmv) mean wet bias for the lidar in the upper troposphere and lower stratosphere (UTLS). The other two lidars provided satisfactory results in the lower and mid-troposphere (2–5% wet bias over the range 3–10 km), but suffered from contamination by fluorescence (wet bias ranging from 5 to 50% between 10 km and 15 km), preventing their use as an independent measurement in the UTLS. The comparison between all available stratospheric sounders allowed to identify only the largest biases, in particular a 10% dry bias of the Water Vapor Millimeter-wave Spectrometer compared to the Aura-Microwave Limb Sounder. No other large, or at least statistically significant, biases could be observed. Total Precipitable Water (TPW) measurements from six different co-located instruments were available. Several retrieval groups provided their own TPW retrievals, resulting in the comparison of 10 different datasets. Agreement within 7% (0.7 mm) was found between all datasets. Such good agreement illustrates the maturity of these measurements and raises confidence levels for their use as an alternate or complementary source of calibration for the Raman lidars. Tropospheric and stratospheric ozone and temperature measurements were also available during the campaign. The water vapor and ozone lidar measurements, together with the advected potential vorticity results from the high-resolution transport model MIMOSA, allowed the identification and study of a deep stratospheric intrusion over TMF. These observations demonstrated the lidar strong potential for future long-term monitoring of water vapor in the UTLS.
Resumo:
Historical, i.e. pre-1957, upper-air data are a valuable source of information on the state of the atmosphere, in some parts of the world dating back to the early 20th century. However, to date, reanalyses have only partially made use of these data, and only of observations made after 1948. Even for the period between 1948 (the starting year of the NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis) and the International Geophysical Year in 1957 (the starting year of the ERA-40 reanalysis), when the global upper-air coverage reached more or less its current status, many observations have not yet been digitised. The Comprehensive Historical Upper-Air Network (CHUAN) already compiled a large collection of pre-1957 upper-air data. In the framework of the European project ERA-CLIM (European Reanalysis of Global Climate Observations), significant amounts of additional upper-air data have been catalogued (> 1.3 million station days), imaged (> 200 000 images) and digitised (> 700 000 station days) in order to prepare a new input data set for upcoming reanalyses. The records cover large parts of the globe, focussing on, so far, less well covered regions such as the tropics, the polar regions and the oceans, and on very early upper-air data from Europe and the US. The total number of digitised/inventoried records is 61/101 for moving upper-air data, i.e. data from ships, etc., and 735/1783 for fixed upper-air stations. Here, we give a detailed description of the resulting data set including the metadata and the quality checking procedures applied. The data will be included in the next version of CHUAN. The data are available at doi:10.1594/PANGAEA.821222
Resumo:
The first operations at the new High-altitude Maïdo Observatory at La Réunion began in 2013. The Maïdo Lidar Calibration Campaign (MALICCA) was organized there in April 2013 and has focused on the validation of the thermodynamic parameters (temperature, water vapor, and wind) measured with many instruments including the new very large lidar for water vapor and temperature profiles. The aim of this publication consists of providing an overview of the different instruments deployed during this campaign and their status, some of the targeted scientific questions and associated instrumental issues. Some specific detailed studies for some individual techniques were addressed elsewhere. This study shows that temperature profiles were obtained from the ground to the mesopause (80 km) thanks to the lidar and regular meteorological balloon-borne sondes with an overlap range showing good agreement. Water vapor is also monitored from the ground to the mesopause by using the Raman lidar and microwave techniques. Both techniques need to be pushed to their limit to reduce the missing range in the lower stratosphere. Total columns obtained from global positioning system or spectrometers are valuable for checking the calibration and ensuring vertical continuity. The lidar can also provide the vertical cloud structure that is a valuable complementary piece of information when investigating the water vapor cycle. Finally, wind vertical profiles, which were obtained from sondes, are now also retrieved at Maïdo from the newly implemented microwave technique and the lidar. Stable calibrations as well as a small-scale dynamical structure are required to monitor the thermodynamic state of the middle atmosphere, ensure validation of satellite sensors, study the transport of water vapor in the vicinity of the tropical tropopause and study their link with cirrus clouds and cyclones and the impact of small-scale dynamics (gravity waves) and their link with the mean state of the mesosphere.
Resumo:
Historical, i.e. pre-1957, upper-air data are a valuable source of information on the state of the atmosphere, in some parts of the World back to the early 20th century. However, to date reanalyses have only partially made use of these data, and only of observations made after 1948. Even for the period between 1948 (the starting year of the NCEP/NCAR reanalysis) and the International Geophysical Year in 1957 (the starting year of the ERA-40 reanalysis), when the global upper-air coverage reached more or less its current status, many observations have not been digitised until now. The Comprehensive Historical Upper-Air Network (CHUAN) already compiled a large collection of pre-1957 upper-air data. In the framework of the European project ERA-CLIM, significant amounts of additional upper-air data have been catalogued (> 1.3 mio station days), imaged (> 200,000 images) and digitised (> 700,000 station days) in order to prepare a new input dataset for upcoming reanalyses. The records cover large parts of the globe, focussing on so far less well covered regions such as the Tropics, the polar regions and the Oceans, and on very early upper-air data from Europe and the US. The total number of digitised/inventoried records is 61/101 for moving upper-air data, i.e. data from ships etc., and 735/1,783 for fixed upper-air stations. Here, we give a detailed description of the resulting dataset including the metadata and the quality checking procedures applied. The data will be included in the next version of CHUAN.
Resumo:
Using principal component analysis and cyst diversity and equity trends, we can recognize four distinct dinoflagellate cyst (dinocyst) assemblages from four Rupelian (Early Oligocene) cores in the Mainz Embayment of the northern Rhine Graben (SW Germany). These assemblages are the Spiniferites ramosus (PC1), Thalassiphora pelagica (PC2), Homotryblium tenuispinosum (PC3), and Vozzhennikovia spinula (PC4) assemblages. The four cores provide an onshore-offshore transect in the Mainz Embayment. The H. tenuispinosum assemblage shows high factor loadings in proximal to intermediate cores, which is interpreted to reflect temporary high-salinity conditions. Mean dinocyst diversity and equity increase with distance from the Mid-Rupelian shoreline, indicating increasingly stable paleoenvironmental conditions towards the center of the Mainz Embayment. Within individual cores, changes in dinocyst assemblages through time are related to paleoenvironmental and paleoclimatological changes. The three proximal to intermediate cores show dominance of the H. tenuispinosum assemblage repeatedly alternating with high factor loadings of the T. pelagica assemblage. In both cases, dinocyst diversity and equity tend to be reduced. Highest factor loadings of the S. ramosus assemblage occur in intervals where neither of the above assemblages is dominant and tend to coincide with dinocyst diversity and equity maxima. We interpret this distribution pattern to denote different paleoceanographic conditions, reflecting drier and more humid phases in the Early Oligocene of Central Europe. During relatively dry periods, increased salinity conditions prevailed in proximal to intermediate settings of the Mainz Embayment, as reflected by the dominance of the H. tenuispinosum assemblage. During more humid periods, increased runoff led to higher nutrient availability and the formation of a pycnocline separating slightly less saline surface waters from higher saline deeper waters, thus impeding vertical circulation. These environmental conditions are documented in high loadings of the T. pelagica assemblage which is indicative of increased eutrophication and/or oxygen-depleted bottom waters. Transitions between drier and more humid periods, i.e. episodes of normal marine conditions, are characterized by high loadings predominantly of the S. ramosus assemblage as well as increased dinocyst diversity and equity values. We propose that the alternations between drier and more humid phases may be related to variations in the ocean-atmosphere moisture flux from the North Atlantic into Central Europe bearing a high-latitude climate signal.