931 resultados para Upper bound


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A channel router is an important design aid in the design automation of VLSI circuit layout. Many algorithms have been developed based on various wiring models with routing done on two layers. With the recent advances in VLSI process technology, it is possible to have three independent layers for interconnection. In this paper two algorithms are presented for three-layer channel routing. The first assumes a very simple wiring model. This enables the routing problem to be solved optimally in a time of O(n log n). The second algorithm is for a different wiring model and has an upper bound of O(n2) for its execution time. It uses fewer horizontal tracks than the first algorithm. For the second model the channel width is not bounded by the channel density.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study a Hamiltonian describing a pendulum coupled with several anisochronous oscillators, giving a simple construction of unstable KAM tori and their stable and unstable manifolds for analytic perturbations. When the coupling takes place through an even trigonometric polynomial in the angle variables, we extend analytically the solutions of the equations of motion, order by order in the perturbation parameter, to a large neighbourhood of the real line representing time. Subsequently, we devise an asymptotic expansion for the splitting (matrix) associated with a homoclinic point. This expansion consists of contributions that are manifestly exponentially small in the limit of vanishing gravity, by a shift-of-countour argument. Hence, we infer a similar upper bound for the splitting itself. In particular, the derivation of the result does not call for a tree expansion with explicit cancellation mechanisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The object of this dissertation is to study globally defined bounded p-harmonic functions on Cartan-Hadamard manifolds and Gromov hyperbolic metric measure spaces. Such functions are constructed by solving the so called Dirichlet problem at infinity. This problem is to find a p-harmonic function on the space that extends continuously to the boundary at inifinity and obtains given boundary values there. The dissertation consists of an overview and three published research articles. In the first article the Dirichlet problem at infinity is considered for more general A-harmonic functions on Cartan-Hadamard manifolds. In the special case of two dimensions the Dirichlet problem at infinity is solved by only assuming that the sectional curvature has a certain upper bound. A sharpness result is proved for this upper bound. In the second article the Dirichlet problem at infinity is solved for p-harmonic functions on Cartan-Hadamard manifolds under the assumption that the sectional curvature is bounded outside a compact set from above and from below by functions that depend on the distance to a fixed point. The curvature bounds allow examples of quadratic decay and examples of exponential growth. In the final article a generalization of the Dirichlet problem at infinity for p-harmonic functions is considered on Gromov hyperbolic metric measure spaces. Existence and uniqueness results are proved and Cartan-Hadamard manifolds are considered as an application.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis which consists of an introduction and four peer-reviewed original publications studies the problems of haplotype inference (haplotyping) and local alignment significance. The problems studied here belong to the broad area of bioinformatics and computational biology. The presented solutions are computationally fast and accurate, which makes them practical in high-throughput sequence data analysis. Haplotype inference is a computational problem where the goal is to estimate haplotypes from a sample of genotypes as accurately as possible. This problem is important as the direct measurement of haplotypes is difficult, whereas the genotypes are easier to quantify. Haplotypes are the key-players when studying for example the genetic causes of diseases. In this thesis, three methods are presented for the haplotype inference problem referred to as HaploParser, HIT, and BACH. HaploParser is based on a combinatorial mosaic model and hierarchical parsing that together mimic recombinations and point-mutations in a biologically plausible way. In this mosaic model, the current population is assumed to be evolved from a small founder population. Thus, the haplotypes of the current population are recombinations of the (implicit) founder haplotypes with some point--mutations. HIT (Haplotype Inference Technique) uses a hidden Markov model for haplotypes and efficient algorithms are presented to learn this model from genotype data. The model structure of HIT is analogous to the mosaic model of HaploParser with founder haplotypes. Therefore, it can be seen as a probabilistic model of recombinations and point-mutations. BACH (Bayesian Context-based Haplotyping) utilizes a context tree weighting algorithm to efficiently sum over all variable-length Markov chains to evaluate the posterior probability of a haplotype configuration. Algorithms are presented that find haplotype configurations with high posterior probability. BACH is the most accurate method presented in this thesis and has comparable performance to the best available software for haplotype inference. Local alignment significance is a computational problem where one is interested in whether the local similarities in two sequences are due to the fact that the sequences are related or just by chance. Similarity of sequences is measured by their best local alignment score and from that, a p-value is computed. This p-value is the probability of picking two sequences from the null model that have as good or better best local alignment score. Local alignment significance is used routinely for example in homology searches. In this thesis, a general framework is sketched that allows one to compute a tight upper bound for the p-value of a local pairwise alignment score. Unlike the previous methods, the presented framework is not affeced by so-called edge-effects and can handle gaps (deletions and insertions) without troublesome sampling and curve fitting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A nonexhaustive procedure for obtaining minimal Reed-Muller canonical (RMC) forms of switching functions is presented. This procedure is a modification of a procedure presented earlier in the literature and enables derivation of an upper bound on the number of RMC forms to be derived to choose a minimal one. It is shown that the task of obtaining minimal RMC forms is simplified in the case of symmetric functions and self-dual functions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rate-constrained power minimization (PMIN) over a code division multiple-access (CDMA) channel with correlated noise is studied. PMIN is. shown to be an instance of a separable convex optimization problem subject to linear ascending constraints. PMIN is further reduced to a dual problem of sum-rate maximization (RMAX). The results highlight the underlying unity between PMIN, RMAX, and a problem closely related to PMIN but with linear receiver constraints. Subsequently, conceptually simple sequence design algorithms are proposed to explicitly identify an assignment of sequences and powers that solve PMIN. The algorithms yield an upper bound of 2N - 1 on the number of distinct sequences where N is the processing gain. The sequences generated using the proposed algorithms are in general real-valued. If a rate-splitting and multi-dimensional CDMA approach is allowed, the upper bound reduces to N distinct sequences, in which case the sequences can form an orthogonal set and be binary +/- 1-valued.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An anomalous variation in the experimental elastic modulus, E, of Ti-6Al-4V-xB (with x up to 0.55 wt.%) is reported. Volume fractions and moduli of the constituent phases were measured using microscopy and nanoindentation,respectively. These were used in simple micromechanical models to examine if the E values could be rationalized. Experimental E values higher than the upper bound estimates suggest complex interplay between microstructural modifications, induced by the addition of B, and properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we present numerical evidence that supports the notion of minimization in the sequence space of proteins for a target conformation. We use the conformations of the real proteins in the Protein Data Bank (PDB) and present computationally efficient methods to identify the sequences with minimum energy. We use edge-weighted connectivity graph for ranking the residue sites with reduced amino acid alphabet and then use continuous optimization to obtain the energy-minimizing sequences. Our methods enable the computation of a lower bound as well as a tight upper bound for the energy of a given conformation. We validate our results by using three different inter-residue energy matrices for five proteins from protein data bank (PDB), and by comparing our energy-minimizing sequences with 80 million diverse sequences that are generated based on different considerations in each case. When we submitted some of our chosen energy-minimizing sequences to Basic Local Alignment Search Tool (BLAST), we obtained some sequences from non-redundant protein sequence database that are similar to ours with an E-value of the order of 10(-7). In summary, we conclude that proteins show a trend towards minimizing energy in the sequence space but do not seem to adopt the global energy-minimizing sequence. The reason for this could be either that the existing energy matrices are not able to accurately represent the inter-residue interactions in the context of the protein environment or that Nature does not push the optimization in the sequence space, once it is able to perform the function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An axis-parallel k-dimensional box is a Cartesian product R-1 x R-2 x...x R-k where R-i (for 1 <= i <= k) is a closed interval of the form [a(i), b(i)] on the real line. For a graph G, its boxicity box(G) is the minimum dimension k, such that G is representable as the intersection graph of (axis-parallel) boxes in k-dimensional space. The concept of boxicity finds applications in various areas such as ecology, operations research etc. A number of NP-hard problems are either polynomial time solvable or have much better approximation ratio on low boxicity graphs. For example, the max-clique problem is polynomial time solvable on bounded boxicity graphs and the maximum independent set problem for boxicity d graphs, given a box representation, has a left perpendicular1 + 1/c log n right perpendicular(d-1) approximation ratio for any constant c >= 1 when d >= 2. In most cases, the first step usually is computing a low dimensional box representation of the given graph. Deciding whether the boxicity of a graph is at most 2 itself is NP-hard. We give an efficient randomized algorithm to construct a box representation of any graph G on n vertices in left perpendicular(Delta + 2) ln nright perpendicular dimensions, where Delta is the maximum degree of G. This algorithm implies that box(G) <= left perpendicular(Delta + 2) ln nright perpendicular for any graph G. Our bound is tight up to a factor of ln n. We also show that our randomized algorithm can be derandomized to get a polynomial time deterministic algorithm. Though our general upper bound is in terms of maximum degree Delta, we show that for almost all graphs on n vertices, their boxicity is O(d(av) ln n) where d(av) is the average degree.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A d-dimensional box is a Cartesian product of d closed intervals on the real line. The boxicity of a graph is the minimum dimension d such that it is representable as the intersection graph of d-dimensional boxes. We give a short constructive proof that every graph with maximum degree D has boxicity at most 2D2. We also conjecture that the best upper bound is linear in D.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider the problem of determining if two finite groups are isomorphic. The groups are assumed to be represented by their multiplication tables. We present an O(n) algorithm that determines if two Abelian groups with n elements each are isomorphic. This improves upon the previous upper bound of O(n log n) [Narayan Vikas, An O(n) algorithm for Abelian p-group isomorphism and an O(n log n) algorithm for Abelian group isomorphism, J. Comput. System Sci. 53 (1996) 1-9] known for this problem. We solve a more general problem of computing the orders of all the elements of any group (not necessarily Abelian) of size n in O(n) time. Our algorithm for isomorphism testing of Abelian groups follows from this result. We use the property that our order finding algorithm works for any group to design a simple O(n) algorithm for testing whether a group of size n, described by its multiplication table, is nilpotent. We also give an O(n) algorithm for determining if a group of size n, described by its multiplication table, is Abelian. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider the problem of detecting statistically significant sequential patterns in multineuronal spike trains. These patterns are characterized by ordered sequences of spikes from different neurons with specific delays between spikes. We have previously proposed a data-mining scheme to efficiently discover such patterns, which occur often enough in the data. Here we propose a method to determine the statistical significance of such repeating patterns. The novelty of our approach is that we use a compound null hypothesis that not only includes models of independent neurons but also models where neurons have weak dependencies. The strength of interaction among the neurons is represented in terms of certain pair-wise conditional probabilities. We specify our null hypothesis by putting an upper bound on all such conditional probabilities. We construct a probabilistic model that captures the counting process and use this to derive a test of significance for rejecting such a compound null hypothesis. The structure of our null hypothesis also allows us to rank-order different significant patterns. We illustrate the effectiveness of our approach using spike trains generated with a simulator.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single-symbol maximum likelihood (ML) decodable distributed orthogonal space-time block codes (DOST- BCs) have been introduced recently for cooperative networks and an upper-bound on the maximal rate of such codes along with code constructions has been presented. In this paper, we introduce a new class of distributed space-time block codes (DSTBCs) called semi-orthogonal precoded distributed single-symbol decodable space-time block codes (Semi-SSD-PDSTBCs) wherein, the source performs preceding on the information symbols before transmitting it to all the relays. A set of necessary and sufficient conditions on the relay matrices for the existence of semi-SSD- PDSTBCs is proved. It is shown that the DOSTBCs are a special case of semi-SSD-PDSTBCs. A subset of semi-SSD-PDSTBCs having diagonal covariance matrix at the destination is studied and an upper bound on the maximal rate of such codes is derived. The bounds obtained are approximately twice larger than that of the DOSTBCs. A systematic construction of Semi- SSD-PDSTBCs is presented when the number of relays K ges 4 and the constructed codes are shown to have higher rates than that of DOSTBCs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sequence design problems are considered in this paper. The problem of sum power minimization in a spread spectrum system can be reduced to the problem of sum capacity maximization, and vice versa. A solution to one of the problems yields a solution to the other. Subsequently, conceptually simple sequence design algorithms known to hold for the white-noise case are extended to the colored noise case. The algorithms yield an upper bound of 2N - L on the number of sequences where N is the processing gain and L the number of non-interfering subsets of users. If some users (at most N - 1) are allowed to signal along a limited number of multiple dimensions, then N orthogonal sequences suffice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sequence design and resource allocation for a symbol-asynchronous chip-synchronous code division multiple access (CDMA) system is considered in this paper. A simple lower bound on the minimum sum-power required for a non-oversized system, based on the best achievable for a non-spread system, and an analogous upper bound on the sum rate are first summarised. Subsequently, an algorithm of Sundaresan and Padakandla is shown to achieve the lower bound on minimum sum power (upper bound on sum rate, respectively). Analogous to the synchronous case, by splitting oversized users in a system with processing gain N, a system with no oversized users is easily obtained, and the lower bound on sum power (upper bound on sum rate, respectively) is shown to be achieved by using N orthogonal sequences. The total number of splits is at most N - 1.