837 resultados para Upkeep of assets
Resumo:
A novel m-ary tree based approach is presented to solve asset management decisions which are combinatorial in nature. The approach introduces a new dynamic constraint based control mechanism which is capable of excluding infeasible solutions from the solution space. The approach also provides a solution to the challenges with ordering of assets decisions.
Resumo:
Accurate reliability prediction for large-scale, long lived engineering is a crucial foundation for effective asset risk management and optimal maintenance decision making. However, a lack of failure data for assets that fail infrequently, and changing operational conditions over long periods of time, make accurate reliability prediction for such assets very challenging. To address this issue, we present a Bayesian-Marko best approach to reliability prediction using prior knowledge and condition monitoring data. In this approach, the Bayesian theory is used to incorporate prior information about failure probabilities and current information about asset health to make statistical inferences, while Markov chains are used to update and predict the health of assets based on condition monitoring data. The prior information can be supplied by domain experts, extracted from previous comparable cases or derived from basic engineering principles. Our approach differs from existing hybrid Bayesian models which are normally used to update the parameter estimation of a given distribution such as the Weibull-Bayesian distribution or the transition probabilities of a Markov chain. Instead, our new approach can be used to update predictions of failure probabilities when failure data are sparse or nonexistent, as is often the case for large-scale long-lived engineering assets.
Resumo:
This study examines the occurrence of misappropriation-type fraud within Australian listed firms and the relation between the incidence of this type of fraud and a firm's governance strength. We measure governance strength using factors relating to traditional corporate governance, such as board composition, CEO duality, and audit committee composition, as well as factors relating to information technology governance. In our study, we use actual dollar amount of fraud reported by listed companies responding to the 2004 KPMG Fraud Survey as one of three different misappropriation measures and publicly available firm-specific data to measure the other variables in the model. Our study found that where the chief executive officer (CEO) also holds the position of chairperson of the board of directors, the likelihood of fraud increases. We also find that the greater the number of independent directors on the audit committee, the lower the level of fraud. Taken together, these results are particularly encouraging as they provide support for regulatory bodies such as the Australian Stock Exchange (ASX) and the Australian Securities and Investment Commission (ASIC), which place considerable emphasis on the importance of establishing good corporate governance practices. The study provides empirical evidence that employing good corporate governance reduces the risk of the misappropriation of assets.
Resumo:
A financial study is presented of charities registered under the Queensland Collections Act. These charities are required to register under that Act as they seek donations from the public. The study collected financial information from the audited annual financial statements lodged in 1989 and 1992. The charities were classified into industry classes according to Australian Standard Industry Classification. Data is presented on charity's numerical growth, growth of assets and receipts, lodging of first returns under the Act and defaults in lodging returns. A series of exploratory case studies of greater financial detail are presented to establish possible reasons for the aggregated trends established in the first part of the study. The study concludes by raising three issues, the methodological implications posed by the research, substantive issues about the behaviour of nonprofit organisations and issues for the focus of future research.
Resumo:
The ability to estimate the asset reliability and the probability of failure is critical to reducing maintenance costs, operation downtime, and safety hazards. Predicting the survival time and the probability of failure in future time is an indispensable requirement in prognostics and asset health management. In traditional reliability models, the lifetime of an asset is estimated using failure event data, alone; however, statistically sufficient failure event data are often difficult to attain in real-life situations due to poor data management, effective preventive maintenance, and the small population of identical assets in use. Condition indicators and operating environment indicators are two types of covariate data that are normally obtained in addition to failure event and suspended data. These data contain significant information about the state and health of an asset. Condition indicators reflect the level of degradation of assets while operating environment indicators accelerate or decelerate the lifetime of assets. When these data are available, an alternative approach to the traditional reliability analysis is the modelling of condition indicators and operating environment indicators and their failure-generating mechanisms using a covariate-based hazard model. The literature review indicates that a number of covariate-based hazard models have been developed. All of these existing covariate-based hazard models were developed based on the principle theory of the Proportional Hazard Model (PHM). However, most of these models have not attracted much attention in the field of machinery prognostics. Moreover, due to the prominence of PHM, attempts at developing alternative models, to some extent, have been stifled, although a number of alternative models to PHM have been suggested. The existing covariate-based hazard models neglect to fully utilise three types of asset health information (including failure event data (i.e. observed and/or suspended), condition data, and operating environment data) into a model to have more effective hazard and reliability predictions. In addition, current research shows that condition indicators and operating environment indicators have different characteristics and they are non-homogeneous covariate data. Condition indicators act as response variables (or dependent variables) whereas operating environment indicators act as explanatory variables (or independent variables). However, these non-homogenous covariate data were modelled in the same way for hazard prediction in the existing covariate-based hazard models. The related and yet more imperative question is how both of these indicators should be effectively modelled and integrated into the covariate-based hazard model. This work presents a new approach for addressing the aforementioned challenges. The new covariate-based hazard model, which termed as Explicit Hazard Model (EHM), explicitly and effectively incorporates all three available asset health information into the modelling of hazard and reliability predictions and also drives the relationship between actual asset health and condition measurements as well as operating environment measurements. The theoretical development of the model and its parameter estimation method are demonstrated in this work. EHM assumes that the baseline hazard is a function of the both time and condition indicators. Condition indicators provide information about the health condition of an asset; therefore they update and reform the baseline hazard of EHM according to the health state of asset at given time t. Some examples of condition indicators are the vibration of rotating machinery, the level of metal particles in engine oil analysis, and wear in a component, to name but a few. Operating environment indicators in this model are failure accelerators and/or decelerators that are included in the covariate function of EHM and may increase or decrease the value of the hazard from the baseline hazard. These indicators caused by the environment in which an asset operates, and that have not been explicitly identified by the condition indicators (e.g. Loads, environmental stresses, and other dynamically changing environment factors). While the effects of operating environment indicators could be nought in EHM; condition indicators could emerge because these indicators are observed and measured as long as an asset is operational and survived. EHM has several advantages over the existing covariate-based hazard models. One is this model utilises three different sources of asset health data (i.e. population characteristics, condition indicators, and operating environment indicators) to effectively predict hazard and reliability. Another is that EHM explicitly investigates the relationship between condition and operating environment indicators associated with the hazard of an asset. Furthermore, the proportionality assumption, which most of the covariate-based hazard models suffer from it, does not exist in EHM. According to the sample size of failure/suspension times, EHM is extended into two forms: semi-parametric and non-parametric. The semi-parametric EHM assumes a specified lifetime distribution (i.e. Weibull distribution) in the form of the baseline hazard. However, for more industry applications, due to sparse failure event data of assets, the analysis of such data often involves complex distributional shapes about which little is known. Therefore, to avoid the restrictive assumption of the semi-parametric EHM about assuming a specified lifetime distribution for failure event histories, the non-parametric EHM, which is a distribution free model, has been developed. The development of EHM into two forms is another merit of the model. A case study was conducted using laboratory experiment data to validate the practicality of the both semi-parametric and non-parametric EHMs. The performance of the newly-developed models is appraised using the comparison amongst the estimated results of these models and the other existing covariate-based hazard models. The comparison results demonstrated that both the semi-parametric and non-parametric EHMs outperform the existing covariate-based hazard models. Future research directions regarding to the new parameter estimation method in the case of time-dependent effects of covariates and missing data, application of EHM in both repairable and non-repairable systems using field data, and a decision support model in which linked to the estimated reliability results, are also identified.
Resumo:
This study seeks to answer the question of “why is policy innovation in Indonesia, in particular reformed state asset management laws and regulations, stagnant?” through an empirical and qualitative approach, identifying and exploring potential impeding influences to the full and equal implementation of said laws and regulations. The policies and regulations governing the practice of state asset management has emerged as an urgent question among many countries worldwide (Conway, 2006; Dow, Gillies, Nichols, & Polen, 2006; Kaganova, McKellar, & Peterson, 2006; McKellar, 2006b) for there is heightened awareness of the complex and crucial role that state assets play in public service provision. Indonesia is an example of such country, introducing a ‘big-bang’ reform in state asset management laws, policies, regulations, and technical guidelines. Two main reasons propelled said policy innovation: a) world-wide common challenges in state asset management practices - such as incomplete information system, accountability, and governance adherence/conceptualisation (Kaganova, McKellar and Peterson 2006); and b) unfavourable state assets audit results in all regional governments across Indonesia. The latter reasoning is emphasised, as the Indonesian government admits to past neglect in ensuring efficiency and best practice in its state asset management practices. Prior to reform there was euphoria of building and developing state assets and public infrastructure to support government programs of the day. Although this euphoria resulted in high growth within Indonesia, there seems to be little attention paid to how state assets bought/built is managed. Up until 2003-2004 state asset management is considered to be minimal; inventory of assets is done manually, there is incomplete public sector accounting standards, and incomplete financial reporting standards (Hadiyanto 2009). During that time transparency, accountability, and maintenance state assets was not the main focus, be it by the government or the society itself (Hadiyanto 2009). Indonesia exemplified its enthusiasm in reforming state asset management policies and practices through the establishment of the Directorate General of State Assets in 2006. The Directorate General of State Assets have stressed the new direction that it is taking state asset management laws and policies through the introduction of Republic of Indonesia Law Number 38 Year 2008, which is an amended regulation overruling Republic of Indonesia Law Number 6 Year 2006 on Central/Regional Government State Asset Management (Hadiyanto, 2009c). Law number 38/2008 aims to further exemplify good governance principles and puts forward a ‘the highest and best use of assets’ principle in state asset management (Hadiyanto, 2009a). The methodology of this study is that of qualitative case study approach, with a triangulated data collection method of document analysis (all relevant state asset management laws, regulations, policies, technical guidelines, and external audit reports), semi-structured interviews, and on-site observation. Empirical data of this study involved a sample of four Indonesian regional governments and 70 interviews, performed during January-July 2010. The analytical approach of this study is that of thematic analysis, in an effort to identify common influences and/or challenges to policy innovation within Indonesia. Based on the empirical data of this study specific impeding influences to state asset management reform is explored, answering the question why innovative policy implementation is stagnant. An in-depth analysis of each influencing factors to state asset management reform, and the attached interviewee’s opinions for each factor, suggests the potential of an ‘excuse rhetoric’; whereby the influencing factors identified are a smoke-screen, or are myths that public policy makers and implementers believe in; as a means to explain innovative policy stagnancy. This study offers insights to Indonesian policy makers interested in ensuring the conceptualisation and full implementation of innovative policies, particularly, although not limited to, within the context of state asset management practices.
Resumo:
Our review has demonstrated that small firm growth is a complex phenomenon. The concept ‘growth’ denotes both a change in amount and the process by which that change is attained. Further, the growth can be achieved in different ways and with varying degrees of regularity, and it manifests itself along several different dimensions such as sales, employment, and accumulation of assets. This complexity has naturally led researchers to adopt different approaches to studying growth and to use different measures to assess it. Further, although our review shows that it can fruitfully be regarded as a growth issue, the research on small firms' internationalization has largely developed as a separate stream. Similarly, other relatively separate literatures have evolved, which effectively focus on different modes of growth although mostly without regarding the studies first and foremost as growth studies. This goes for topics such as mergers and acquisitions, diversification, and integration - research streams which have largely ignored the particularities of small firms and which in turn have been largely ignored among researchers focusing on small firm growth.
Resumo:
The reliability analysis is crucial to reducing unexpected down time, severe failures and ever tightened maintenance budget of engineering assets. Hazard based reliability methods are of particular interest as hazard reflects the current health status of engineering assets and their imminent failure risks. Most existing hazard models were constructed using the statistical methods. However, these methods were established largely based on two assumptions: one is the assumption of baseline failure distributions being accurate to the population concerned and the other is the assumption of effects of covariates on hazards. These two assumptions may be difficult to achieve and therefore compromise the effectiveness of hazard models in the application. To address this issue, a non-linear hazard modelling approach is developed in this research using neural networks (NNs), resulting in neural network hazard models (NNHMs), to deal with limitations due to the two assumptions for statistical models. With the success of failure prevention effort, less failure history becomes available for reliability analysis. Involving condition data or covariates is a natural solution to this challenge. A critical issue for involving covariates in reliability analysis is that complete and consistent covariate data are often unavailable in reality due to inconsistent measuring frequencies of multiple covariates, sensor failure, and sparse intrusive measurements. This problem has not been studied adequately in current reliability applications. This research thus investigates such incomplete covariates problem in reliability analysis. Typical approaches to handling incomplete covariates have been studied to investigate their performance and effects on the reliability analysis results. Since these existing approaches could underestimate the variance in regressions and introduce extra uncertainties to reliability analysis, the developed NNHMs are extended to include handling incomplete covariates as an integral part. The extended versions of NNHMs have been validated using simulated bearing data and real data from a liquefied natural gas pump. The results demonstrate the new approach outperforms the typical incomplete covariates handling approaches. Another problem in reliability analysis is that future covariates of engineering assets are generally unavailable. In existing practices for multi-step reliability analysis, historical covariates were used to estimate the future covariates. Covariates of engineering assets, however, are often subject to substantial fluctuation due to the influence of both engineering degradation and changes in environmental settings. The commonly used covariate extrapolation methods thus would not be suitable because of the error accumulation and uncertainty propagation. To overcome this difficulty, instead of directly extrapolating covariate values, projection of covariate states is conducted in this research. The estimated covariate states and unknown covariate values in future running steps of assets constitute an incomplete covariate set which is then analysed by the extended NNHMs. A new assessment function is also proposed to evaluate risks of underestimated and overestimated reliability analysis results. A case study using field data from a paper and pulp mill has been conducted and it demonstrates that this new multi-step reliability analysis procedure is able to generate more accurate analysis results.
Resumo:
The ability to identify and assess user engagement with transmedia productions is vital to the success of individual projects and the sustainability of this mode of media production as a whole. It is essential that industry players have access to tools and methodologies that offer the most complete and accurate picture of how audiences/users engage with their productions and which assets generate the most valuable returns of investment. Drawing upon research conducted with Hoodlum Entertainment, a Brisbane-based transmedia producer, this project involved an initial assessment of the way engagement tends to be understood, why standard web analytics tools are ill-suited to measuring it, how a customised tool could offer solutions, and why this question of measuring engagement is so vital to the future of transmedia as a sustainable industry. Working with data provided by Hoodlum Entertainment and Foxtel Marketing, the outcome of the study was a prototype for a custom data visualisation tool that allowed access, manipulation and presentation of user engagement data, both historic and predictive. The prototyped interfaces demonstrate how the visualization tool would collect and organise data specific to multiplatform projects by aggregating data across a number of platform reporting tools. Such a tool is designed to encompass not only platforms developed by the transmedia producer but also sites developed by fans. This visualisation tool accounted for multiplatform experience projects whose top level is comprised of people, platforms and content. People include characters, actors, audience, distributors and creators. Platforms include television, Facebook and other relevant social networks, literature, cinema and other media that might be included in the multiplatform experience. Content refers to discreet media texts employed within the platform, such as tweet, a You Tube video, a Facebook post, an email, a television episode, etc. Core content is produced by the creators’ multiplatform experiences to advance the narrative, while complimentary content generated by audience members offers further contributions to the experience. Equally important is the timing with which the components of the experience are introduced and how they interact with and impact upon each other. Being able to combine, filter and sort these elements in multiple ways we can better understand the value of certain components of a project. It also offers insights into the relationship between the timing of the release of components and user activity associated with them, which further highlights the efficacy (or, indeed, failure) of assets as catalysts for engagement. In collaboration with Hoodlum we have developed a number of design scenarios experimenting with the ways in which data can be visualised and manipulated to tell a more refined story about the value of user engagement with certain project components and activities. This experimentation will serve as the basis for future research.
Resumo:
Agent-based modelling (ABM), like other modelling techniques, is used to answer specific questions from real world systems that could otherwise be expensive or impractical. Its recent gain in popularity can be attributed to some degree to its capacity to use information at a fine level of detail of the system, both geographically and temporally, and generate information at a higher level, where emerging patterns can be observed. This technique is data-intensive, as explicit data at a fine level of detail is used and it is computer-intensive as many interactions between agents, which can learn and have a goal, are required. With the growing availability of data and the increase in computer power, these concerns are however fading. Nonetheless, being able to update or extend the model as more information becomes available can become problematic, because of the tight coupling of the agents and their dependence on the data, especially when modelling very large systems. One large system to which ABM is currently applied is the electricity distribution where thousands of agents representing the network and the consumers’ behaviours are interacting with one another. A framework that aims at answering a range of questions regarding the potential evolution of the grid has been developed and is presented here. It uses agent-based modelling to represent the engineering infrastructure of the distribution network and has been built with flexibility and extensibility in mind. What distinguishes the method presented here from the usual ABMs is that this ABM has been developed in a compositional manner. This encompasses not only the software tool, which core is named MODAM (MODular Agent-based Model) but the model itself. Using such approach enables the model to be extended as more information becomes available or modified as the electricity system evolves, leading to an adaptable model. Two well-known modularity principles in the software engineering domain are information hiding and separation of concerns. These principles were used to develop the agent-based model on top of OSGi and Eclipse plugins which have good support for modularity. Information regarding the model entities was separated into a) assets which describe the entities’ physical characteristics, and b) agents which describe their behaviour according to their goal and previous learning experiences. This approach diverges from the traditional approach where both aspects are often conflated. It has many advantages in terms of reusability of one or the other aspect for different purposes as well as composability when building simulations. For example, the way an asset is used on a network can greatly vary while its physical characteristics are the same – this is the case for two identical battery systems which usage will vary depending on the purpose of their installation. While any battery can be described by its physical properties (e.g. capacity, lifetime, and depth of discharge), its behaviour will vary depending on who is using it and what their aim is. The model is populated using data describing both aspects (physical characteristics and behaviour) and can be updated as required depending on what simulation is to be run. For example, data can be used to describe the environment to which the agents respond to – e.g. weather for solar panels, or to describe the assets and their relation to one another – e.g. the network assets. Finally, when running a simulation, MODAM calls on its module manager that coordinates the different plugins, automates the creation of the assets and agents using factories, and schedules their execution which can be done sequentially or in parallel for faster execution. Building agent-based models in this way has proven fast when adding new complex behaviours, as well as new types of assets. Simulations have been run to understand the potential impact of changes on the network in terms of assets (e.g. installation of decentralised generators) or behaviours (e.g. response to different management aims). While this platform has been developed within the context of a project focussing on the electricity domain, the core of the software, MODAM, can be extended to other domains such as transport which is part of future work with the addition of electric vehicles.
Resumo:
Global awareness for cleaner and renewable energy is transforming the electricity sector at many levels. New technologies are being increasingly integrated into the electricity grid at high, medium and low voltage levels, new taxes on carbon emissions are being introduced and individuals can now produce electricity, mainly through rooftop photovoltaic (PV) systems. While leading to improvements, these changes also introduce challenges, and a question that often rises is ‘how can we manage this constantly evolving grid?’ The Queensland Government and Ergon Energy, one of the two Queensland distribution companies, have partnered with some Australian and German universities on a project to answer this question in a holistic manner. The project investigates the impact the integration of renewables and other new technologies has on the physical structure of the grid, and how this evolving system can be managed in a sustainable and economical manner. To aid understanding of what the future might bring, a software platform has been developed that integrates two modelling techniques: agent-based modelling (ABM) to capture the characteristics of the different system units accurately and dynamically, and particle swarm optimization (PSO) to find the most economical mix of network extension and integration of distributed generation over long periods of time. Using data from Ergon Energy, two types of networks (3 phase, and Single Wired Earth Return or SWER) have been modelled; three-phase networks are usually used in dense networks such as urban areas, while SWER networks are widely used in rural Queensland. Simulations can be performed on these networks to identify the required upgrades, following a three-step process: a) what is already in place and how it performs under current and future loads, b) what can be done to manage it and plan the future grid and c) how these upgrades/new installations will perform over time. The number of small-scale distributed generators, e.g. PV and battery, is now sufficient (and expected to increase) to impact the operation of the grid, which in turn needs to be considered by the distribution network manager when planning for upgrades and/or installations to stay within regulatory limits. Different scenarios can be simulated, with different levels of distributed generation, in-place as well as expected, so that a large number of options can be assessed (Step a). Once the location, sizing and timing of assets upgrade and/or installation are found using optimisation techniques (Step b), it is possible to assess the adequacy of their daily performance using agent-based modelling (Step c). One distinguishing feature of this software is that it is possible to analyse a whole area at once, while still having a tailored solution for each of the sub-areas. To illustrate this, using the impact of battery and PV can have on the two types of networks mentioned above, three design conditions can be identified (amongst others): · Urban conditions o Feeders that have a low take-up of solar generators, may benefit from adding solar panels o Feeders that need voltage support at specific times, may be assisted by installing batteries · Rural conditions - SWER network o Feeders that need voltage support as well as peak lopping may benefit from both battery and solar panel installations. This small example demonstrates that no single solution can be applied across all three areas, and there is a need to be selective in which one is applied to each branch of the network. This is currently the function of the engineer who can define various scenarios against a configuration, test them and iterate towards an appropriate solution. Future work will focus on increasing the level of automation in identifying areas where particular solutions are applicable.
Resumo:
The policies and regulations governing the practice of state asset management have emerged as an urgent question among many countries worldwide for there is heightened awareness of the complex and crucial role that state assets play in public service provision. Indonesia is an example of such country, introducing a ‘big-bang’ reform in state asset management laws, policies, regulations, and technical guidelines. Indonesia exemplified its enthusiasm in reforming state asset management policies and practices through the establishment of the Directorate General of State Assets in 2006. The Directorate General of State Assets have stressed the new direction that it is taking state asset management laws and policies through the introduction of Republic of Indonesia Law Number 38 Year 2008, which is an amended regulation overruling Republic of Indonesia Law Number 6 Year 2006 on Central/Regional Government State Asset Management. Law number 38/2008 aims to further exemplify good governance principles and puts forward a ‘the highest and best use of assets’ principle in state asset management. The purpose of this study is to explore and analyze specific contributing influences to state asset management practices, answering the question why innovative state asset management policy implementation is stagnant. The methodology of this study is that of qualitative case study approach, utilizing empirical data sample of four Indonesian regional governments. Through a thematic analytical approach this study provides an in-depth analysis of each influencing factors to state asset management reform. Such analysis suggests the potential of an ‘excuse rhetoric’; whereby the influencing factors identified are a smoke-screen, or are myths that public policy makers and implementers believe in, as a means to ex-plain stagnant implementation of innovative state asset management practice. Thus this study offers deeper insights of the intricate web that influences state as-set management innovative policies to state asset management policy makers; to be taken into consideration in future policy writing.
Resumo:
This new work provides a comprehensive and theoretically rich discussion of the law on cross-border insolvency. It engages with several current multi-billion dollar insolvencies such as those of Nortel Networks and Lehman Brothers to provide the reader with state of the art knowledge of the complex problems posed by transnational insolvency. As the number of transnational insolvencies grows due to prevailing economic conditions, practitioners are increasingly required to navigate the mass of legal rules applicable to cross-border insolvency situations. The associated challenges are heightened by the diversity of legal structures employed by modern business entities and a patchwork of costly, inefficient, and unpredictable national legal rules. The response has been a proliferation of international legal instruments such as the UNCITRAL Model Law and the the EU Insolvency Regulation, supplemented by judicial practice, adding further layers of complexity. Writing from an Australian perspective, the authors analyse this network of legal rules and subsequent case law. In addition, they explain the theoretical underpinnings of these rules in an accessible manner to build a solid foundation for practice, facilitate advanced reasoning, and enable the development of sophisticated arguments for law reform. Comparative case law from jurisdictions such as the United States and United Kingdom is also included. This book is highly relevant to insolvency practitioners faced with the recovery of assets located in different jurisdictions, transactional lawyers for whom knowledge of potential insolvency pitfalls is essential, and academics. It is invaluable for students at both undergraduate and postgraduate level seeking a sound understanding of this challenging area of law.
Resumo:
This paper examines the association between asset revaluations and discretionary accruals (a proxy for earnings management) using a sample of the largest 300 Australian companies. The results from this study indicate that the revaluation of non-current assets is positively associated with discretionary accruals. This finding is consistent with the argument that revaluation of assets reflects higher agency problems in the form of increased earnings management. Additional findings are that discretionary accruals are higher for firms reporting their non-current assets at fair values appraised by directors, than those of firms that use external appraisers. As well, the choice of auditors and the strength of corporate governance can constrain the opportunistic behaviour of managers in the accounting choice to revalue non-current assets.
Resumo:
This paper examines the association between the level of audit fees paid and asset revaluations, one use of fair value accounting. This Australian study also investigates attributes of asset revaluations and the association with the level of audit fees paid. We find that firms choosing the revaluation model incur higher audit fees than those that chose the cost model; asset revaluations made by directors lead to the firm incurring higher audit fees than for those made by external independent appraisers; and revaluation of investment properties leads to lower audit fees. The findings suggest that asset revaluations can result in higher agency costs and audit fees vary with the reliability of the revaluations and the class of assets being revalued.