992 resultados para Ultrasonic fatigue testing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A round robin program zoos conducted to assess the ability of three different X-radiographic systems for imaging internal fatigue cracks in riveted lap joints of composite glass reinforced fiber/metal laminate. From an engineering perspective, conventional film radiography and direct radiography have produced the best results, identifying and characterizing in detail internal damage on metallic faying surfaces of fastened glass reinforced fiber/metal laminate joints. On the other hand, computed radiographic images presented large projected geometric distortions and feature shifts due to the angular incident radiation beam, disclosing only partial internal cracking patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The premature failure of steam turbine rotor blades, manufactured in forged 12% Cr-NiMoV martensitic stainless steel, was investigated using visual inspection non-destructive testing, macro and microfractography, microstructural characterization, EDS microanalysis, chemical analysis, micro hardness and tensile testing. The blades belonged to the last stage of a thermoelectric plant steam turbine generator (140 MV A). The results indicated that the failure of the blades was promoted by foreign-particle erosion, which attacked preferentially the low-pressure side of the lower trailing edge of the blades. The resulting wear grooves acted as stress raisers and promoted the nucleation of fatigue cracks, which probably grew during the transition events of the steam turbine operation. Finally, water drop erosion was observed on the blade upper leading edge (low-pressure side). (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coaracy Nunes was the first hydroelectric power plant in the Amazon region, being located in Araguari River, Amapa State, Brazil. The plant operates since 1976, presenting now a nominal capacity of 78 MW. The shear pins, which are installed in the turbine hydraulic arms to control the wicket gate and regulate the water flow into the turbine blades, suffered several breakdowns since 2004. These shear pins are made of an ASTM 410 stainless steel and were designed to break by a shear overload of 120 kN. Fractographic investigation of the pins, however, revealed two types of fracture topographies: a region of stable crack propagation area, with non-pronounced striation and secondary cracks; and a region of unstable propagation, featuring elongated dimples. These results indicated that the stable crack propagation occurred by fatigue (bidirectional bending), which was nucleated at machining marks under high nominal load. Finite element analysis was carried out using two loading conditions (pure shear and a combination of shear and bending) and the results indicated that the presence of a bending stress strongly increased the stress concentration factor (85% rise in the shear stress and 130% rise in the Von Mises stress). Misalignment during shear pins assembly associated with vibration might have promoted the premature failure of the shear by bending fatigue. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To evaluate patients with Diabetes Mellitus type 2 and painful peripheral neuropathy in order to investigate oral complaints and facial somatosensory findings. Research design and methods: Case-control study; 29 patients (12 women, mean age 57.86 yo) with Diabetes Mellitus type 2 and 31 age-gender-matched controls were evaluated with a standardized protocol for general characteristics, orofacial pain, research diagnostic criteria for temporomandibular disorders, visual analogue scale and McGill Pain questionnaire, and a systematic protocol of quantitative sensory testing for bilateral facial sensitivity at the areas innervated by the trigeminal branches, which included the thermal detection by ThermoSensi 2, tactile evaluation with vonFrey filaments, and superficial pain thresholds with a superficial algometer (Micromar). Statistical analysis was performed with Wilcoxon, chi-square, confidence intervals and Spearman (p < 0.05). Results: Orofacial pain was reported by 55.2% of patients, and the most common descriptor was fatigue (50%); 17.2% had burning mouth. Myofascial temporomandibular disorders were diagnosed in 9(31%) patients. The study group showed higher sensory thresholds of pain at the right maxillary branch (p = 0.017) but sensorial differences were not associated with pain (p = 0.608). Glycemia and HbA(1c) were positively correlated with the quantitative sensory testing results of pain (p < 0.05) and cold (p = 0.044) perceptions. Higher pain thresholds were correlated with higher glycemia and glycated hemoglobin (p = 0.027 and p = 0.026). Conclusions: There was a high prevalence of orofacial pain and burning mouth was the most common complaint. The association of loss of pain sensation and higher glycemia and glycated hemoglobin can be of clinical use for the follow-up of DM complications. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To test the strength to failure and fracture mode of three indirect composite materials directly applied onto Ti-6Al-4V implant abutments vs cemented standard porcelain-fused-to-metal (PFM) crowns. Materials and Methods: Sixty-four locking taper abutments were randomly allocated to four groups and were cleaned in ethanol in an ultrasonic bath for 5 min. After drying under ambient conditions, the abutments were grit blasted and a custom 4-cusp molar crown mold was utilized to produce identical crowns (n = 16 per group) of Tescera (Bisco), Ceramage (Shofu), and Diamond Crown (DRM) according to the manufacturer`s instructions. The porcelain-fused-to-metal crowns were fabricated by conventional means involving the construction and a wax pattern and casting of a metallic coping followed by sintering of increasing layers of porcelain. All crowns were loaded to failure by an indenter placed at one of the cusp tips at a 1 mm/min rate. Subsequently, fracture analysis was performed by means of stereomicroscopy and scanning electron microscopy. One-way ANOVA at 95% level of significance was utilized for statistical analysis. Results: The single load to failure (+/- SD) results were: Tescera (1130 +/- 239 N), Ceramage (1099 +/- 257 N), Diamond Crown (1155 +/- 284 N), and PFM (1081 +/- 243 N). Stereomicroscopy analysis showed two distinct failure modes, where the loaded cusp failed either with or without abutment/metallic coping exposure. SEM analysis of the fractures showed multiple crack propagation towards the cervical region of the crown below a region of plastic deformation at the indenter contact region. Conclusion: The three indirect composites and PFM systems fractured at loads higher than those typically associated with normal occlusal function. Although each material had a different composition and handling technique, no significant differences were found concerning their single load to fracture resistance among composite systems and PFM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: This study compared the reliability and fracture patterns of zirconia cores veneered with pressable porcelain submitted to either axial or off-axis sliding contact fatigue. Methods: Forty-two Y-TZP plates (12 mm x 12 mm x 0.5 mm) veneered with pressable porcelain (12 mm x 12 mm x 1.2 mm) and adhesively luted to water aged composite resin blocks (12 mm x 12 mm x 4 mm) were stored in water at least 7 days prior to testing. Profiles for step-stress fatigue (ratio 3:2:1) were determined from single load to fracture tests (n = 3). Fatigue loading was delivered on specimen either on axial (n = 18) or off-axis 30 degrees angulation (n = 18) to simulate posterior tooth cusp inclination creating a 0.7 mm slide. Single load and fatigue tests utilized a 6.25 mm diameter WC indenter. Specimens were inspected by means of polarized-light microscope and SEM. Use level probability Weibull curves were plotted with 2-sided 90% confidence bounds (CB) and reliability for missions of 50,000 cycles at 200 N (90% CB) were calculated. Results: The calculated Weibull Beta was 3.34 and 2.47 for axial and off-axis groups, respectively, indicating that fatigue accelerated failure in both loading modes. The reliability data for a mission of 50,000 cycles at 200 N load with 90% CB indicates no difference between loading groups. Deep penetrating cone cracks reaching the core-veneer interface were observed in both groups. Partial cones due to the sliding component were observed along with the cone cracking for the off-axis group. No Y-TZP core fractures were observed. Conclusions: Reliability was not significantly different between axial and off-axis mouth-motion fatigued pressed over Y-TZP cores, but incorporation of sliding resulted in more aggressive damage on the veneer. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a study concerning the fatigue behaviour of asphalt mixtures with bitumen modified with high content of crumb rubber used in Portugal. For assessing the fatigue behaviour of this type of mixtures, four asphalt mixtures with high content of crumb rubber were used: two field bituminous mixtures – an open-graded and a gap-graded – both with granite aggregates; and two laboratory manufactured bituminous mixtures – an open-graded mixture with granite aggregates and a gap-graded mixture with crushed gravel aggregates. Since this type of mixtures are mainly applied in wearing courses, the effect of ageing in the fatigue behaviour of one of the studied asphalt rubber mixtures was also assessed through laboratory testing. The paper presents the main results achieved so far concerning the fatigue resistance and it could be concluded that all the materials have exhibited a good behaviour, in agreement with others previous studies. In the case of the aged gap-graded material, it was observed a slight reduction on the fatigue life comparatively to the un-aged one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work tubular fiber reinforced specimens are tested for fatigue life. The specimens are biaxially loaded with tension and shear stresses, with a load angle β of 30° and 60° and a load ratio of R=0,1. There are many factors that affect fatigue life of a fiber reinforced material and the main goal of this work is to study the effects of load ratio R by obtaining S-N curves and compare them to the previous works (1). All the other parameters, such as specimen production, fatigue loading frequency and temperature, will be the same as for the previous tests. For every specimen, stiffness, temperature of the specimen during testing, crack counting and final fracture mode are obtained. Prior to testing, a study if the literature regarding the load ratio effects on composites fatigue life and with that review estimate the initial stresses to be applied in testing. In previous works (1) similar specimens have only been tested for a load ratio of R=-1 and therefore the behaviour of this tubular specimens for a different load ratio is unknown. All the data acquired will be analysed and compared to the previous works, emphasizing the differences found and discussing the possible explanations for those differences. The crack counting software, developed at the institute, has shown useful before, however different adjustments to the software parameters lead to different cracks numbers for the same picture, and therefore a better methodology will be discussed to improve the crack counting results. After the specimen’s failure, all the data will be collected and stored and fibre volume content for every specimen is also determinate. The number of tests required to make the S-N curves are obtained according to the existent standards. Additionally are also identified some improvements to the testing machine setup and to the procedures for future testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This present study aimed to investigate the fatigue life of unused (new) endodontic instruments made of NiTi with control memory by Coltene™ and subjected to the multi curvature of a mandibular first molar root canal. Additionally, the instrument‟s structural behaviour was analysed through non-linear finite element analysis (FEA). The fatigue life of twelve Hyflex™ CM files was assessed while were forced to adopt a stance with multiple radius of curvature, similar to the ones usually found in a mandibular first molar root canal; nine of them were subjected to Pecking motion, a relative movement of axial type. To achieve this, it was designed an experimental setup with the aim of timing the instruments until fracture while worked inside a stainless steel mandibular first molar model with relative axial motion to simulate the pecking motion. Additionally, the model‟s root canal multi-curvature was confirmed by radiography. The non-linear finite element analysis was conducted using the computer aided design software package SolidWorks™ Simulation, in order to define the imposed displacement required by the FEA, it was necessary to model an endodontic instrument with simplified geometry using SolidWorks™ and subsequently analyse the geometry of the root canal CAD model. The experimental results shown that the instruments subjected to pecking motion displayed higher fatigue life values and higher lengths of fractured tips than those with only rotational relative movement. The finite element non-linear analyses shown, for identical conditions, maximum values for the first principal stress lower than the yield strength of the material and those were located in similar positions to the instrument‟s fracture location determined by the experimental testing results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background: Prolonged aerobic exercise, such as running a marathon, produces supraphysiological stress that can affect the athlete's homeostasis. Some degree of transient myocardial dysfunction ("cardiac fatigue") can be observed for several days after the race. Objective: To verify if there are changes in the cardiopulmonary capacity, and cardiac inotropy and lusitropy in amateur marathoners after running a marathon. Methods: The sample comprised 6 male amateur runners. All of them underwent cardiopulmonary exercise testing (CPET) one week before the São Paulo Marathon, and 3 to 4 days after that race. They underwent echocardiography 24 hours prior to and immediately after the marathon. All subjects were instructed not to exercise, to maintain their regular diet, ingest the same usual amount of liquids, and rest at least 8 hours a day in the period preceding the CPET. Results: The athletes completed the marathon in 221.5 (207; 250) minutes. In the post-marathon CPET, there was a significant reduction in peak oxygen consumption and peak oxygen pulse compared to the results obtained before the race (50.75 and 46.35 mL.kg-1 .min-1; 19.4 and 18.1 mL.btm, respectively). The echocardiography showed a significant reduction in the s' wave (inotropic marker), but no significant change in the E/e' ratio (lusitropic marker). Conclusions: In amateur runners, the marathon seems to promote changes in the cardiopulmonary capacity identified within 4 days after the race, with a reduction in the cardiac contractility. Such changes suggest that some degree of "cardiac fatigue" can occur.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Iowa Law Enforcement Academy Council, in recognizing the importance of physical fitness status for job performance, established this physical test regimen as a employment standard effective February 15, 1993. No person can be selected or appointed as a law enforcement officer without first successfully passing all of the elements of this test. (See 501 IAC 2.1, adopted pursuant to Section 80B.11(5), Code of Iowa.) Upon entry into the Academy every candidate will be given the same test as an assessment for training purposes and to ensure that each recruit can undergo the physical demands of the Academy without undue risk of injury, and with a level of fatigue tolerance to meet all Academy requirements. If at the time of entrance into the Academy an officer does not meet minimum standards, he or she will not be admitted. This pamphlet will provide information on the rationale, purpose, testing procedures, standards of performance and fitness activities to prepare for the fitness testing. It is intended to answer the basic questions pertaining to all aspects of the fitness testing process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two composite, prestressed, steel beams, fabricated by slightly different methods, were fatigue tested to destruction. Stresses and deflections were measured at regular intervals, and the behavior of each beam as failure progressed was recorded. Residual stresses were then evaluated by testing segments of each beam. An attempt was made to assess the effects of the residual stresses on fatigue strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a result of the collapse of a 140 foot high-mast lighting tower in Sioux City, Iowa in November of 2003, a thorough investigation into the behavior and design of these tall, yet relatively flexible structures was undertaken. Extensive work regarding the root cause of this failure was carried out by Robert Dexter of The University of Minnesota. Furthermore, a statewide inspection of all the high-mast towers in Iowa revealed fatigue cracks and loose anchor bolts on other existing structures. The current study was proposed to examine the static and dynamic behavior of a variety of towers in the State of Iowa utilizing field testing, specifically long-term monitoring and load testing. This report presents the results and conclusions from this project. The field work for this project was divided into two phases. Phase 1 of the project was conducted in October 2004 and focused on the dynamic properties of ten different towers in Clear Lake, Ames, and Des Moines, Iowa. Of those ten, two were also instrumented to obtain stress distributions at various details and were included in a 12 month long-term monitoring study. Phase 2 of this investigation was conducted in May of 2005, in Sioux City, Iowa, and focused on determining the static and dynamic behavior of a tower similar to the one that collapsed in November 2003. Identical tests were performed on a similar tower which was retrofitted with a more substantial replacement bottom section in order to assess the effect of the retrofit. A third tower with different details was dynamically load tested to determine its dynamic characteristics, similar to the Phase 1 testing. Based on the dynamic load tests, the modal frequencies of the towers fall within the same range. Also, the damping ratios are significantly lower in the higher modes than the values suggested in the AASHTO and CAN/CSA specifications. The comparatively higher damping ratios in the first mode may be due to aerodynamic damping. These low damping ratios in combination with poor fatigue details contribute to the accumulation of a large number of damage-causing cycles. As predicted, the stresses in the original Sioux City tower are much greater than the stresses in the retrofitted towers at Sioux City. Additionally, it was found that poor installation practices which often lead to loose anchor bolts and out-of-level leveling nuts can cause high localized stresses in the towers, which can accelerate fatigue damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current study was initiated to quantify the stresses induced in critical details on the reinforcing jacket and the tower itself through the use of field instrumentation, load testing, and long-term monitoring. Strain gages were installed on the both the tower and the reinforcing jacket. Additional strain gages were installed on two anchor rods. Tests were conducted with and without the reinforcing jacket installed. Data were collected from all strain gages during static load testing and were used to study the stress distribution of the tower caused by known loads, both with and without the reinforcing jacket. The tower was tested dynamically by first applying a static load, and then quickly releasing the load causing the tower to vibrate freely. Furthermore, the tower was monitored over a period of over 1 year to obtain stress range histograms at the critical details to be used for a fatigue evaluation. Also during the long-term monitoring, triggered time-history data were recorded to study the wind loading phenomena that excite the tower.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The future of high technology welded constructions will be characterised by higher strength materials and improved weld quality with respect to fatigue resistance. The expected implementation of high quality high strength steel welds will require that more attention be given to the issues of crack initiation and mechanical mismatching. Experiments and finite element analyses were performed within the framework of continuum damage mechanics to investigate the effect of mismatching of welded joints on void nucleation and coalescence during monotonic loading. It was found that the damage of undermatched joints mainly occurred in the sandwich layer and the damageresistance of the joints decreases with the decrease of the sandwich layer width. The damage of over-matched joints mainly occurred in the base metal adjacent to the sandwich layer and the damage resistance of the joints increases with thedecrease of the sandwich layer width. The mechanisms of the initiation of the micro voids/cracks were found to be cracking of the inclusions or the embrittled second phase, and the debonding of the inclusions from the matrix. Experimental fatigue crack growth rate testing showed that the fatigue life of under-matched central crack panel specimens is longer than that of over-matched and even-matched specimens. Further investigation by the elastic-plastic finite element analysis indicated that fatigue crack closure, which originated from the inhomogeneousyielding adjacent to the crack tip, played an important role in the fatigue crack propagation. The applicability of the J integral concept to the mismatched specimens with crack extension under cyclic loading was assessed. The concept of fatigue class used by the International Institute of Welding was introduced in the parametric numerical analysis of several welded joints. The effect of weld geometry and load condition on fatigue strength of ferrite-pearlite steel joints was systematically evaluated based on linear elastic fracture mechanics. Joint types included lap joints, angle joints and butt joints. Various combinations of the tensile and bending loads were considered during the evaluation with the emphasis focused on the existence of both root and toe cracks. For a lap joint with asmall lack-of-penetration, a reasonably large weld leg and smaller flank angle were recommended for engineering practice in order to achieve higher fatigue strength. It was found that the fatigue strength of the angle joint depended strongly on the location and orientation of the preexisting crack-like welding defects, even if the joint was welded with full penetration. It is commonly believed that the double sided butt welds can have significantly higher fatigue strength than that of a single sided welds, but fatigue crack initiation and propagation can originate from the weld root if the welding procedure results in a partial penetration. It is clearly shown that the fatigue strength of the butt joint could be improved remarkably by ensuring full penetration. Nevertheless, increasing the fatigue strength of a butt joint by increasing the size of the weld is an uneconomical alternative.