823 resultados para UNBOUNDED DELAY
Resumo:
Space-time block codes (STBCs) obtained from non-square complex orthogonal designs are bandwidth efficient compared to those from square real/complex orthogonal designs for colocated coherent MIMO systems and has other applications in (i) non-coherent MIMO systems with non-differential detection, (ii) Space-Time-Frequency codes for MIMO-OFDM systems and (iii) distributed space-time coding for relay channels. Liang (IEEE Trans. Inform. Theory, 2003) has constructed maximal rate non-square designs for any number of antennas, with rates given by [(a+1)/(2a)] when number of transmit antennas is 2a-1 or 2a. However, these designs have large delays. When large number of antennas are considered this rate is close to 1/2. Tarokh et al (IEEE Trans. Inform. Theory, 1999) have constructed rate 1/2 non-square CODs using the rate-1 real orthogonal designs for any number of antennas, where the decoding delay of these codes is less compared to the codes constructed by Liang for number of transmit antennas more than 5. In this paper, we construct a class of rate-1/2 codes for arbitrary number of antennas where the decoding delay is reduced by 50% when compared with the rate-1/2 codes given by Tarokh et al. It is also shown that even though scaling the variables helps to lower the delay it can not be used to increase the rate.
Resumo:
Enhanced Scan design can significantly improve the fault coverage for two pattern delay tests at the cost of exorbitantly high area overhead. The redundant flip-flops introduced in the scan chains have traditionally only been used to launch the two-pattern delay test inputs, not to capture tests results. This paper presents a new, much lower cost partial Enhanced Scan methodology with both improved controllability and observability. Facilitating observation of some hard to observe internal nodes by capturing their response in the already available and underutilized redundant flip-flops improves delay fault coverage with minimal or almost negligible cost. Experimental results on ISCAS'89 benchmark circuits show significant improvement in TDF fault coverage for this new partial enhance scan methodology.
Resumo:
We consider an optimal power and rate scheduling problem for a multiaccess fading wireless channel with the objective of minimising a weighted sum of mean packet transmission delay subject to a peak power constraint. The base station acts as a controller which, depending upon the buffer lengths and the channel state of each user, allocates transmission rate and power to individual users. We assume perfect channel state information at the transmitter and the receiver. We also assume a Markov model for the fading and packet arrival processes. The policy obtained represents a form of Indexability.
Resumo:
Expressions for the phase change Φ suffered by microwaves when transmitted through an artificial dielectric composed of metallic discs arranged in a three-dimensional array have been derived with different approaches as follows (i) molecular theory, (ii) electromagnetic theory and (iii) transmission line theory. The phase change depends on the distance t that the wave traverses inside the dielectric and also the spacing d between centre to centre of any two adjacent discs in the three principal directions. Molecular theory indicates Φ as an increasing function of t, whereas, the other two theories indicate Φ as an oscillatory function of t. The transmission line theory also exhibits Φ to be real or imaginary depending on t. Experimental values of Φ as a function of t have been obtained with the help of a microwave (3·2 cms wavelength) interferometer for two dielectrics having d as 1·91 cms and 2·22 cms respectively.
Resumo:
A simple firing delay circuit for 3-φ fully controlled bridge using a phase locked loop is described. The circuit uses very few components and is an improved scheme over the existing methods. The use of this circuit in three-phase thyristor converters and 'circulating current free' mode dual converters is described.
Resumo:
A theoretical approach has been developed to relate the voltage delay transients of the Mg-MnO2 dry cell observed during discharge by two commonly employed modes, viz., (1) at constant current, and (2) across a constant resistance. The approach has been verified by comparison of experimentally obtained transients with those generated from theory. The method may be used to predict the delay parameters of the Mg-MnO2 dry cell under the two modes of discharge and can, in principle, be extended to lithium batteries.
Resumo:
We propose a novel equalizer for ultrawideband (UWB) multiple-input multiple-output (MIMO) channels characterized by severe delay spreads. The proposed equalizer is based on reactive tabu search (RTS), which is a heuristic originally designed to obtain approximate solutions to combinatorial optimization problems. The proposed RTS equalizer is shown to perform increasingly better for increasing number of multipath components (MPC), and achieve near maximum likelihood (ML) performance for large number of MPCs at a much less complexity than that of the ML detector. The proposed RTS equalizer is shown to perform close to within 0.4 dB of single-input multiple-output AWGN performance at 10(-3) uncoded BER on a severely delay-spread UWB MIMO channel with 48 equal-energy MPCs.
Resumo:
First, the non-linear response of a gyrostabilized platform to a small constant input torque is analyzed in respect to the effect of the time delay (inherent or deliberately introduced) in the correction torque supplied by the servomotor, which itself may be non-linear to a certain extent. The equation of motion of the platform system is a third order nonlinear non-homogeneous differential equation. An approximate analytical method of solution of this equation is utilized. The value of the delay at which the platform response becomes unstable has been calculated by using this approximate analytical method. The procedure is illustrated by means of a numerical example. Second, the non-linear response of the platform to a random input has been obtained. The effects of several types of non-linearity on reducing the level of the mean square response have been investigated, by applying the technique of equivalent linearization and solving the resulting integral equations by using laguerre or Gaussian integration techniques. The mean square responses to white noise and band limited white noise, for various values of the non-linear parameter and for different types of non-linearity function, have been obtained. For positive values of the non-linear parameter the levels of the non-linear mean square responses to both white noise and band-limited white noise are low as compared to the linear mean square response. For negative values of the non-linear parameter the level of the non-linear mean square response at first increases slowly with increasing values of the non-linear parameter and then suddenly jumps to a high level, at a certain value of the non-linearity parameter.
Resumo:
In this paper, we propose a novel and efficient algorithm for modelling sub-65 nm clock interconnect-networks in the presence of process variation. We develop a method for delay analysis of interconnects considering the impact of Gaussian metal process variations. The resistance and capacitance of a distributed RC line are expressed as correlated Gaussian random variables which are then used to compute the standard deviation of delay Probability Distribution Function (PDF) at all nodes in the interconnect network. Main objective is to find delay PDF at a cheaper cost. Convergence of this approach is in probability distribution but not in mean of delay. We validate our approach against SPICE based Monte Carlo simulations while the current method entails significantly lower computational cost.
Resumo:
The propagation constant of a superconducting microstrip transmission delay line is evaluated using the spectral domain immitance approach, modelling the superconductor as a surface current having an equivalent surface impedance found through the complex resistive boundary condition. The sensitivity approach is used to study the beta variations with substrate parameters and film characteristics. Results show that the surface impedance does not have much influence on beta sensitivities with respect to epsilon r, W and h. However, it can be observed that the surface impedance plays a crucial role in determining the optimum design.
Resumo:
The use of delayed coefficient adaptation in the least mean square (LMS) algorithm has enabled the design of pipelined architectures for real-time transversal adaptive filtering. However, the convergence speed of this delayed LMS (DLMS) algorithm, when compared with that of the standard LMS algorithm, is degraded and worsens with increase in the adaptation delay. Existing pipelined DLMS architectures have large adaptation delay and hence degraded convergence speed. We in this paper, first present a pipelined DLMS architecture with minimal adaptation delay for any given sampling rate. The architecture is synthesized by using a number of function preserving transformations on the signal flow graph representation of the DLMS algorithm. With the use of carry-save arithmetic, the pipelined architecture can support high sampling rates, limited only by the delay of a full adder and a 2-to-1 multiplexer. In the second part of this paper, we extend the synthesis methodology described in the first part, to synthesize pipelined DLMS architectures whose power dissipation meets a specified budget. This low-power architecture exploits the parallelism in the DLMS algorithm to meet the required computational throughput. The architecture exhibits a novel tradeoff between algorithmic performance (convergence speed) and power dissipation. (C) 1999 Elsevier Science B.V. All rights resented.
Resumo:
In this paper, we study the problem of wireless sensor network design by deploying a minimum number of additional relay nodes (to minimize network design cost) at a subset of given potential relay locationsin order to convey the data from already existing sensor nodes (hereafter called source nodes) to a Base Station within a certain specified mean delay bound. We formulate this problem in two different ways, and show that the problem is NP-Hard. For a problem in which the number of existing sensor nodes and potential relay locations is n, we propose an O(n) approximation algorithm of polynomial time complexity. Results show that the algorithm performs efficiently (in over 90% of the tested scenarios, it gave solutions that were either optimal or exceeding optimal just by one relay) in various randomly generated network scenarios.
Resumo:
We study the trade-off between delivery delay and energy consumption in delay tolerant mobile wireless networks that use two-hop relaying. The source may not have perfect knowledge of the delivery status at every instant. We formulate the problem as a stochastic control problem with partial information, and study structural properties of the optimal policy. We also propose a simple suboptimal policy. We then compare the performance of the suboptimal policy against that of the optimal control with perfect information. These are bounds on the performance of the proposed policy with partial information. Several other related open loop policies are also compared with these bounds.
Resumo:
A single source network is said to be memory-free if all of the internal nodes (those except the source and the sinks) do not employ memory but merely send linear combinations of the symbols received at their incoming edges on their outgoing edges. In this work, we introduce network-error correction for single source, acyclic, unit-delay, memory-free networks with coherent network coding for multicast. A convolutional code is designed at the source based on the network code in order to correct network- errors that correspond to any of a given set of error patterns, as long as consecutive errors are separated by a certain interval which depends on the convolutional code selected. Bounds on this interval and the field size required for constructing the convolutional code with the required free distance are also obtained. We illustrate the performance of convolutional network error correcting codes (CNECCs) designed for the unit-delay networks using simulations of CNECCs on an example network under a probabilistic error model.