951 resultados para Trigonometric Korovkin Theorem
Resumo:
Gough, John, 'Quantum Stratonovich Stochastic Calculus and the Quantum Wong-Zakai Theorem', Journal of Mathematical Physics. 47, 113509, (2006)
Resumo:
In this work we revisit the problem of the hedging of contingent claim using mean-square criterion. We prove that in incomplete market, some probability measure can be identified so that becomes -martingale under .This is in fact a new proposition on the martingale representation theorem. The new results also identify a weight function that serves to be an approximation to the Radon-Nikodým derivative of the unique neutral martingale measure.
Resumo:
Let $X$ be a real Banach space, $\omega:[0,+\infty)\to\R$ be an increasing continuous function such that $\omega(0)=0$ and $\omega(t+s)\leq\omega(t)+\omega(s)$ for all $t,s\in[0,+\infty)$. By the Osgood theorem, if $\int_{0}^1\frac{dt}{\omega(t)}=\infty$, then for any $(t_0,x_0)\in R\times X$ and any continuous map $f: R\times X\to X$ and such that $\|f(t,x)-f(t,y)\|\leq\omega(\|x-y\|)$ for all $t\in R$, $x,y\in X$, the Cauchy problem $\dot x(t)=f(t,x(t))$, $(t_0)=x_0$ has a unique solution in a neighborhood of $t_0$ . We prove that if $X$ has a complemented subspace with an unconditional Schauder basis and $\int_{0}^1\frac{dt}{\omega(t)}
Resumo:
Let $E$ be a nonnormable Frechet space, and let $E'$ be the space of all continuous linear functionals on $E$ in the strong topology. A continuous mapping $f : E' \to E'$ such that for any $t_0\in R$ and $x_0\in E'$, the Cauchy problem $\dot x= f(x)$, x(t_0) = x_0$ has no solutions is constructed.