106 resultados para Treillis de Galois


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lecture notes in PDF

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this brief note we prove orbifold equivalence between two potentials described by strangely dual exceptional unimodular singularities of type K14 and Q10 in two different ways. The matrix factorizations proving the orbifold equivalence give rise to equations whose solutions are permuted by Galois groups which differ for different expressions of the same singularity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an explicit description, in terms of central simple algebras, of a cup product map which occurs in the statement of local Tate duality for Galois modules of prime cardinality p. Given cocycles f and g, we construct a central simple algebra of dimension p^2 whose class in the Brauer group gives the cup product f\cup g. This algebra is as small as possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let G be a finite group, F a field, FG the group ring of G over F, and J(FG) the Jacobson radical of FG. Using a result of Berman and Witt, we give a method to determine the structure of the center of FG/J(FG), provided that F satisfies a field theoretical condition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alternant codes over arbitrary finite commutative local rings with identity are constructed in terms of parity-check matrices. The derivation is based on the factorization of x s - 1 over the unit group of an appropriate extension of the finite ring. An efficient decoding procedure which makes use of the modified Berlekamp-Massey algorithm to correct errors and erasures is presented. Furthermore, we address the construction of BCH codes over Zm under Lee metric.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BCH codes over arbitrary finite commutative rings with identity are derived in terms of their locator vector. The derivation is based on the factorization of xs -1 over the unit ring of an appropriate extension of the finite ring. We present an efficient decoding procedure, based on the modified Berlekamp-Massey algorithm, for these codes. The code construction and the decoding procedures are very similar to the BCH codes over finite integer rings. © 1999 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Educação Matemática - IGCE

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Educação Matemática - IGCE

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Construction techniques with ruler and the compasses, fundamental on Euclidean geometry, have been related to modern algebraic theories such as solving equations and extension of bodies from the works by Paolo Ruffini (1765-1822), Niels Henrik Abel (1802-1829) and Evariste Galois (1811-1832). This relation could provide an answer to some famous problems, from ancient Greece, such as doubling the cube, the trisection Angle, the Quadrature of the Circle and the construction of regular polygons, which remained unsolved for over two thousand years. Also important for our purposes are the notions of algebraic numbers, transcendental and the criteria for constructability, of those numbers. The objective of this study is to reconstruct relevant steps of geometric constructions with ruler (unmarked) and the compasses, from the elementary to the outcome buildings, in the nineteenth century, considering those mentioned problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present a new construction and decoding of BCH codes over certain rings. Thus, for a nonnegative integer t, let A0 ⊂ A1 ⊂···⊂ At−1 ⊂ At be a chain of unitary commutative rings, where each Ai is constructed by the direct product of appropriate Galois rings, and its projection to the fields is K0 ⊂ K1 ⊂···⊂ Kt−1 ⊂ Kt (another chain of unitary commutative rings), where each Ki is made by the direct product of corresponding residue fields of given Galois rings. Also, A∗ i and K∗ i are the groups of units of Ai and Ki, respectively. This correspondence presents a construction technique of generator polynomials of the sequence of Bose, Chaudhuri, and Hocquenghem (BCH) codes possessing entries from A∗ i and K∗ i for each i, where 0 ≤ i ≤ t. By the construction of BCH codes, we are confined to get the best code rate and error correction capability; however, the proposed contribution offers a choice to opt a worthy BCH code concerning code rate and error correction capability. In the second phase, we extend the modified Berlekamp-Massey algorithm for the above chains of unitary commutative local rings in such a way that the error will be corrected of the sequences of codewords from the sequences of BCH codes at once. This process is not much different than the original one, but it deals a sequence of codewords from the sequence of codes over the chain of Galois rings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Um código BCH C (respectivamente, um código BCH C 0 ) de comprimento n sobre o anel local Zp k (respectivamente, sobre o corpo Zp) é um ideal no anel Zpk [X] (Xn−1) (respectivamente, no anel Zp[X] (Xn−1) ), que ´e gerado por um polinômio mônico que divide Xn−1. Shankar [1] mostrou que as raízes de Xn−1 são as unidades do anel de Galois GR(p k , s) (respectivamente, corpo de Galois GF(p, s)) que é uma extensão do anel Zp k (respectivamente, do corpo Zp), onde s é o grau de um polinômio irredutível f(X) ∈ Zp k [X]. Neste estudo, assumimos que para si = b i , onde b é um primo e i é um inteiro não negativo tal que 0 ≤ i ≤ t, existem extensões de anéis de Galois correspondentes GR(p k , si) (respectivamente, extensões do corpo de Galois GF(p, si)) do anel Zp k (respectivamente, do corpo Zp). Assim, si = b i para i = 2 ou si = b i para i > 2. De modo análogo a [1], neste trabalho, apresentamos uma sequência de códigos BCH C0, C1, · · · , Ct−1C sobre Zp k de comprimentos n0, n1, · · · , nt−1, nt , e uma sequência de códigos BCH C 0 0 , C0 1 , · · · , C0 t−1 , C0 sobre Zp de comprimentos n0, n1, · · · , nt−1, nt , onde cada ni divide p si − 1. Palavras Chave: Anel de Galois, corpo de Galois, código BCH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we present matrices over unitary finite commutative local rings connected through an ascending chain of containments, whose elements are units of the corresponding rings in the chain such that the McCoy ranks are the largest ones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For a positive integer $t$, let \begin{equation*} \begin{array}{ccccccccc} (\mathcal{A}_{0},\mathcal{M}_{0}) & \subseteq & (\mathcal{A}_{1},\mathcal{M}_{1}) & \subseteq & & \subseteq & (\mathcal{A}_{t-1},\mathcal{M}_{t-1}) & \subseteq & (\mathcal{A},\mathcal{M}) \\ \cap & & \cap & & & & \cap & & \cap \\ (\mathcal{R}_{0},\mathcal{M}_{0}^{2}) & & (\mathcal{R}_{1},\mathcal{M}_{1}^{2}) & & & & (\mathcal{R}_{t-1},\mathcal{M}_{t-1}^{2}) & & (\mathcal{R},\mathcal{M}^{2}) \end{array} \end{equation*} be a chain of unitary local commutative rings $(\mathcal{A}_{i},\mathcal{M}_{i})$ with their corresponding Galois ring extensions $(\mathcal{R}_{i},\mathcal{M}_{i}^{2})$, for $i=0,1,\cdots,t$. In this paper, we have given a construction technique of the cyclic, BCH, alternant, Goppa and Srivastava codes over these rings. Though, initially in \cite{AP} it is for local ring $(\mathcal{A},\mathcal{M})$, in this paper, this new approach have given a choice in selection of most suitable code in error corrections and code rate perspectives.