3 resultados para Treillis de Galois

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis studies Frobenius traces in Galois representations from two different directions. In the first problem we explore how often they vanish in Artin-type representations. We give an upper bound for the density of the set of vanishing Frobenius traces in terms of the multiplicities of the irreducible components of the adjoint representation. Towards that, we construct an infinite family of representations of finite groups with an irreducible adjoint action.

In the second problem we partially extend for Hilbert modular forms a result of Coleman and Edixhoven that the Hecke eigenvalues ap of classical elliptical modular newforms f of weight 2 are never extremal, i.e., ap is strictly less than 2[square root]p. The generalization currently applies only to prime ideals p of degree one, though we expect it to hold for p of any odd degree. However, an even degree prime can be extremal for f. We prove our result in each of the following instances: when one can move to a Shimura curve defined by a quaternion algebra, when f is a CM form, when the crystalline Frobenius is semi-simple, and when the strong Tate conjecture holds for a product of two Hilbert modular surfaces (or quaternionic Shimura surfaces) over a finite field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis we study Galois representations corresponding to abelian varieties with certain reduction conditions. We show that these conditions force the image of the representations to be "big," so that the Mumford-Tate conjecture (:= MT) holds. We also prove that the set of abelian varieties satisfying these conditions is dense in a corresponding moduli space.

The main results of the thesis are the following two theorems.

Theorem A: Let A be an absolutely simple abelian variety, End° (A) = k : imaginary quadratic field, g = dim(A). Assume either dim(A) ≤ 4, or A has bad reduction at some prime ϕ, with the dimension of the toric part of the reduction equal to 2r, and gcd(r,g) = 1, and (r,g) ≠ (15,56) or (m -1, m(m+1)/2). Then MT holds.

Theorem B: Let M be the moduli space of abelian varieties with fixed polarization, level structure and a k-action. It is defined over a number field F. The subset of M(Q) corresponding to absolutely simple abelian varieties with a prescribed stable reduction at a large enough prime ϕ of F is dense in M(C) in the complex topology. In particular, the set of simple abelian varieties having bad reductions with fixed dimension of the toric parts is dense.

Besides this we also established the following results:

(1) MT holds for some other classes of abelian varieties with similar reduction conditions. For example, if A is an abelian variety with End° (A) = Q and the dimension of the toric part of its reduction is prime to dim( A), then MT holds.

(2) MT holds for Ribet-type abelian varieties.

(3) The Hodge and the Tate conjectures are equivalent for abelian 4-folds.

(4) MT holds for abelian 4-folds of type II, III, IV (Theorem 5.0(2)) and some 4-folds of type I.

(5) For some abelian varieties either MT or the Hodge conjecture holds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A general definition of interpreted formal language is presented. The notion “is a part of" is formally developed and models of the resulting part theory are used as universes of discourse of the formal languages. It is shown that certain Boolean algebras are models of part theory.

With this development, the structure imposed upon the universe of discourse by a formal language is characterized by a group of automorphisms of the model of part theory. If the model of part theory is thought of as a static world, the automorphisms become the changes which take place in the world. Using this formalism, we discuss a notion of abstraction and the concept of definability. A Galois connection between the groups characterizing formal languages and a language-like closure over the groups is determined.

It is shown that a set theory can be developed within models of part theory such that certain strong formal languages can be said to determine their own set theory. This development is such that for a given formal language whose universe of discourse is a model of part theory, a set theory can be imbedded as a submodel of part theory so that the formal language has parts which are sets as its discursive entities.