937 resultados para Traffic data


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"UILU-ENG 83-1724."--Cover.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Common approaches to IP-traffic modelling have featured the use of stochastic models, based on the Markov property, which can be classified into black box and white box models based on the approach used for modelling traffic. White box models, are simple to understand, transparent and have a physical meaning attributed to each of the associated parameters. To exploit this key advantage, this thesis explores the use of simple classic continuous-time Markov models based on a white box approach, to model, not only the network traffic statistics but also the source behaviour with respect to the network and application. The thesis is divided into two parts: The first part focuses on the use of simple Markov and Semi-Markov traffic models, starting from the simplest two-state model moving upwards to n-state models with Poisson and non-Poisson statistics. The thesis then introduces the convenient to use, mathematically derived, Gaussian Markov models which are used to model the measured network IP traffic statistics. As one of the most significant contributions, the thesis establishes the significance of the second-order density statistics as it reveals that, in contrast to first-order density, they carry much more unique information on traffic sources and behaviour. The thesis then exploits the use of Gaussian Markov models to model these unique features and finally shows how the use of simple classic Markov models coupled with use of second-order density statistics provides an excellent tool for capturing maximum traffic detail, which in itself is the essence of good traffic modelling. The second part of the thesis, studies the ON-OFF characteristics of VoIP traffic with reference to accurate measurements of the ON and OFF periods, made from a large multi-lingual database of over 100 hours worth of VoIP call recordings. The impact of the language, prosodic structure and speech rate of the speaker on the statistics of the ON-OFF periods is analysed and relevant conclusions are presented. Finally, an ON-OFF VoIP source model with log-normal transitions is contributed as an ideal candidate to model VoIP traffic and the results of this model are compared with those of previously published work.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The accurate and reliable estimation of travel time based on point detector data is needed to support Intelligent Transportation System (ITS) applications. It has been found that the quality of travel time estimation is a function of the method used in the estimation and varies for different traffic conditions. In this study, two hybrid on-line travel time estimation models, and their corresponding off-line methods, were developed to achieve better estimation performance under various traffic conditions, including recurrent congestion and incidents. The first model combines the Mid-Point method, which is a speed-based method, with a traffic flow-based method. The second model integrates two speed-based methods: the Mid-Point method and the Minimum Speed method. In both models, the switch between travel time estimation methods is based on the congestion level and queue status automatically identified by clustering analysis. During incident conditions with rapidly changing queue lengths, shock wave analysis-based refinements are applied for on-line estimation to capture the fast queue propagation and recovery. Travel time estimates obtained from existing speed-based methods, traffic flow-based methods, and the models developed were tested using both simulation and real-world data. The results indicate that all tested methods performed at an acceptable level during periods of low congestion. However, their performances vary with an increase in congestion. Comparisons with other estimation methods also show that the developed hybrid models perform well in all cases. Further comparisons between the on-line and off-line travel time estimation methods reveal that off-line methods perform significantly better only during fast-changing congested conditions, such as during incidents. The impacts of major influential factors on the performance of travel time estimation, including data preprocessing procedures, detector errors, detector spacing, frequency of travel time updates to traveler information devices, travel time link length, and posted travel time range, were investigated in this study. The results show that these factors have more significant impacts on the estimation accuracy and reliability under congested conditions than during uncongested conditions. For the incident conditions, the estimation quality improves with the use of a short rolling period for data smoothing, more accurate detector data, and frequent travel time updates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

City streets carry a lot of information that can be exploited to improve the quality of the services the citizens receive. For example, autonomous vehicles need to act accordingly to all the element that are nearby the vehicle itself, like pedestrians, traffic signs and other vehicles. It is also possible to use such information for smart city applications, for example to predict and analyze the traffic or pedestrian flows. Among all the objects that it is possible to find in a street, traffic signs are very important because of the information they carry. This information can in fact be exploited both for autonomous driving and for smart city applications. Deep learning and, more generally, machine learning models however need huge quantities to learn. Even though modern models are very good at gener- alizing, the more samples the model has, the better it can generalize between different samples. Creating these datasets organically, namely with real pictures, is a very tedious task because of the wide variety of signs available in the whole world and especially because of all the possible light, orientation conditions and con- ditions in general in which they can appear. In addition to that, it may not be easy to collect enough samples for all the possible traffic signs available, cause some of them may be very rare to find. Instead of collecting pictures manually, it is possible to exploit data aug- mentation techniques to create synthetic datasets containing the signs that are needed. Creating this data synthetically allows to control the distribution and the conditions of the signs in the datasets, improving the quality and quantity of training data that is going to be used. This thesis work is about using copy-paste data augmentation to create synthetic data for the traffic sign recognition task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses a multi-layer feedforward (MLF) neural network incident detection model that was developed and evaluated using field data. In contrast to published neural network incident detection models which relied on simulated or limited field data for model development and testing, the model described in this paper was trained and tested on a real-world data set of 100 incidents. The model uses speed, flow and occupancy data measured at dual stations, averaged across all lanes and only from time interval t. The off-line performance of the model is reported under both incident and non-incident conditions. The incident detection performance of the model is reported based on a validation-test data set of 40 incidents that were independent of the 60 incidents used for training. The false alarm rates of the model are evaluated based on non-incident data that were collected from a freeway section which was video-taped for a period of 33 days. A comparative evaluation between the neural network model and the incident detection model in operation on Melbourne's freeways is also presented. The results of the comparative performance evaluation clearly demonstrate the substantial improvement in incident detection performance obtained by the neural network model. The paper also presents additional results that demonstrate how improvements in model performance can be achieved using variable decision thresholds. Finally, the model's fault-tolerance under conditions of corrupt or missing data is investigated and the impact of loop detector failure/malfunction on the performance of the trained model is evaluated and discussed. The results presented in this paper provide a comprehensive evaluation of the developed model and confirm that neural network models can provide fast and reliable incident detection on freeways. (C) 1997 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses an object-oriented neural network model that was developed for predicting short-term traffic conditions on a section of the Pacific Highway between Brisbane and the Gold Coast in Queensland, Australia. The feasibility of this approach is demonstrated through a time-lag recurrent network (TLRN) which was developed for predicting speed data up to 15 minutes into the future. The results obtained indicate that the TLRN is capable of predicting speed up to 5 minutes into the future with a high degree of accuracy (90-94%). Similar models, which were developed for predicting freeway travel times on the same facility, were successful in predicting travel times up to 15 minutes into the future with a similar degree of accuracy (93-95%). These results represent substantial improvements on conventional model performance and clearly demonstrate the feasibility of using the object-oriented approach for short-term traffic prediction. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eleven species of Amazon parrots (genus Amazona) are known to occur in Brazil, and nest poaching and illegal traffic pose serious conservation threats to these species. When the illegal owners realize these animals are incompatible with their expectations and lifestyle, or when the police arrests traders and owners, these trafficked animals are often considered unfit for release and sent to local zoos and captive breeders. A retrospective survey of animal and necropsy records from 1986 to 2007 was used to evaluate the impacts of animal traffic on the population composition and mortality patterns of Amazon parrots at the Quinzinho de Barros Municipal Zoological Park, Sorocaba, Brazil. Data were obtained for 374 Amazon parrots of ten Brazilian species, and there was evidence that the studied population could be split into two major groups: a majority belonging to the Amazona aestiva species and a minority belonging to the remaining species. In comparison, the animals of the first group were more frequently admitted from traffic-related origins (98 vs. 75%), had a shorter lifespan (median 301 days vs. 848 days) and a higher mortality within the first year postadmission (54 vs. 37%), were less likely to receive expensive treatments, and were more frequently housed off-exhibit. On an average, parrots were found to have a short postadmission lifespan (median 356 days), with 92.5% of the birds dying within their first five years in captivity. The paper discusses the difficult dilemmas these incoming traffic-related animals pose to zoo management and official anti-traffic policies. Zoo Biol 29:600-614, 2010. (C) 2010 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many organisations need to extract useful information from huge amounts of movement data. One example is found in maritime transportation, where the automated identification of a diverse range of traffic routes is a key management issue for improving the maintenance of ports and ocean routes, and accelerating ship traffic. This paper addresses, in a first stage, the research challenge of developing an approach for the automated identification of traffic routes based on clustering motion vectors rather than reconstructed trajectories. The immediate benefit of the proposed approach is to avoid the reconstruction of trajectories in terms of their geometric shape of the path, their position in space, their life span, and changes of speed, direction and other attributes over time. For clustering the moving objects, an adapted version of the Shared Nearest Neighbour algorithm is used. The motion vectors, with a position and a direction, are analysed in order to identify clusters of vectors that are moving towards the same direction. These clusters represent traffic routes and the preliminary results have shown to be promising for the automated identification of traffic routes with different shapes and densities, as well as for handling noise data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel moving target indicator which is selective with respect to a direction of interest. Preliminary results indicate that the obtained selectivity may have high interest in civil traffic monitoring using single channel SAR data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta dissertação incide sobre a problemática da construção de um data warehouse para a empresa AdClick que opera na área de marketing digital. O marketing digital é um tipo de marketing que utiliza os meios de comunicação digital, com a mesma finalidade do método tradicional que se traduz na divulgação de bens, negócios e serviços e a angariação de novos clientes. Existem diversas estratégias de marketing digital tendo em vista atingir tais objetivos, destacando-se o tráfego orgânico e tráfego pago. Onde o tráfego orgânico é caracterizado pelo desenvolvimento de ações de marketing que não envolvem quaisquer custos inerentes à divulgação e/ou angariação de potenciais clientes. Por sua vez o tráfego pago manifesta-se pela necessidade de investimento em campanhas capazes de impulsionar e atrair novos clientes. Inicialmente é feita uma abordagem do estado da arte sobre business intelligence e data warehousing, e apresentadas as suas principais vantagens as empresas. Os sistemas business intelligence são necessários, porque atualmente as empresas detêm elevados volumes de dados ricos em informação, que só serão devidamente explorados fazendo uso das potencialidades destes sistemas. Nesse sentido, o primeiro passo no desenvolvimento de um sistema business intelligence é concentrar todos os dados num sistema único integrado e capaz de dar apoio na tomada de decisões. É então aqui que encontramos a construção do data warehouse como o sistema único e ideal para este tipo de requisitos. Nesta dissertação foi elaborado o levantamento das fontes de dados que irão abastecer o data warehouse e iniciada a contextualização dos processos de negócio existentes na empresa. Após este momento deu-se início à construção do data warehouse, criação das dimensões e tabelas de factos e definição dos processos de extração e carregamento dos dados para o data warehouse. Assim como a criação das diversas views. Relativamente ao impacto que esta dissertação atingiu destacam-se as diversas vantagem a nível empresarial que a empresa parceira neste trabalho retira com a implementação do data warehouse e os processos de ETL para carregamento de todas as fontes de informação. Sendo que algumas vantagens são a centralização da informação, mais flexibilidade para os gestores na forma como acedem à informação. O tratamento dos dados de forma a ser possível a extração de informação a partir dos mesmos.