634 resultados para Torre tubular
Resumo:
2015
Resumo:
Este trabalho tem como objetivo apresentar uma reflexão sobre o processo de aprendizagem do conceito de Função Exponencial no Ensino Médio, a partir da utilização do jogo Torre de Hanói virtual, através do uso de laptops educacionais. Os dados foram coletados por meio de um questionário inicial, para identificação das ideias prévias dos estudantes e por meio de registros em um diário de campo. Em seguida, os dados foram analisados conforme a metodologia Análise Textual Discursiva. A partir da análise, emergiram duas categorias: a primeira indica que a ideia inicial apresentada pelos alunos em relação à Função Exponencial está associada a uma caracterização da linguagem ligada à Função Quadrática. Já, a segunda categoria aponta uma transformação da linguagem natural do entendimento da função exponencial para a linguagem formal, isto é, a formalização escolarizada do conceito de Função Exponencial.
Resumo:
Acoustic pulse reflectometry is used to reconstruct the internal bore profile of trumpet and cornet leadpipe. The method distinguishes between radii differences as small as 0.03 mm, and has since been used by various UK-based brass instrument manufacturers as a diagnostic tool to detect defects that are significant enough to acoustically alter performance.
Resumo:
A method is discussed for measuring the acoustic impedance of tubular objects that gives accurate results for a wide range of frequencies. The apparatus that is employed is similar to that used in many previously developed methods; it consists of a cylindrical measurement duct fitted with several microphones, of which two are active in each measurement session, and a driver at one of its ends. The object under study is fitted at the other end. The impedance of the object is determined from the microphone signals obtained during excitation of the air inside the 1 duct by the driver, and from three coefficients that are pre-determined using four calibration measurements with closed cylindrical tubes. The calibration procedure is based on the simple mathematical relationships between the impedances of the calibration tubes, and does not require knowledge of the propagation constant. Measurements with a cylindrical tube yield an estimate of the attenuation constant for plane waves, which is found to differ from the theoretical prediction by less than 1.4% in the frequency range 1 kHz-20 kHz. Impedance measurements of objects with abrupt changes in diameter are found to be in good agreement with multimodal theory.
Resumo:
Erythropoietin (EPO) is the main humoral stimulus of erythropoiesis. In adult mammals, the kidney releases EPO in response to hypoxic stress. Conflicting data have suggested either renal tubular or peritubular cell origins of EPO synthesis in vivo. In situ hybridization studies were performed to define further the kidney cell type(s) capable of increasing EPO gene expression during hypoxic stimulation. EPO gene expression was stimulated in mice exposed to acute hypobaric hypoxia. Kidneys from hypoxic and control normoxic mice were obtained. Six digoxigenin-labelled oligonucleotide probes complementary to EPO exon sequences were utilized for in situ hybridization for EPO messenger RNA. Positive hybridization signals were identified in some proximal tubular cells, confined to the inner third of the renal cortex of hypoxic mouse kidney.
Resumo:
The erythropoietin gene has been cloned in three mammalian species including man and recombinant erythropoietin is now used to treat the anaemia of chronic renal failure. Despite the isolation of the gene the precise cellular location of erythropoietin synthesis remains controversial. We present studies which demonstrate erythropoietin production by kidney tubular cells. Erythropoietin gene expression (messenger RNA) was detected by in situ hybridization using an oligonucleotide gene probe and the translated protein product by immunohistochemistry employing antibodies raised to pure recombinant DNA derived erythropoietin.
Resumo:
A novel tubular cell structure for a direct methanol fuel cell (DMFC) is proposed based on a tubular Ti mesh and a Ti mesh anode. A dip coating method has been developed to fabricate the cell. The characterization of the tubular MEA has been analyzed by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), half cell and single cell testing. The tubular DMFC single cell comprises: a Ti mesh, a cathode diffusion layer and catalyst layer, a Nafion recast membrane and a PtRuO/Ti anode. Half cell tests show that the optimum catalyst loading, Ru/(Ru + Pt) atomic ratio and the Nafion loading of a PtRuO/Ti mesh anode are: 4 mg cm, 38% and 0.6 mg cm, respectively. Single cell tests show that the Nafion loading of the recast Nafion membrane and the concentration of the methanol in the electrolyte have a major influence on cell performance. © 2006 Elsevier B.V. All rights reserved.
Resumo:
A novel tubular cathode for the direct methanol fuel cell (DMFC) is proposed, based on a tubular titanium mesh. A dip-coating method has been developed for its fabrication. The tubular cathode is composed of titanium mesh, a cathode diffusion layer, a catalyst layer, and a recast Nafion® film. The titanium mesh is present at the inner circumference of the diffusion layer, while the recast Nafion® film is at the outer circumference of the catalyst layer. A DMFC single cell with a 3.5 mgPt cm tubular cathode was able to perform as well, in terms of power density, as a conventional planar DMFC. A peak power density of 9 mW cm was reached under atmospheric air at 25 °C. © 2006 WILEY-VCH Verlag GmbH & Co. KGaA.