973 resultados para Tissue proteolytic enzymes
Resumo:
Man uses a variety of synthetic material for his comfortable materialistic life. Thus human interactions may become harmful for various terrestrial and aquatic lives. This is by contaminating their habitat and by becoming a threat to organisms itself. Thus the application and dispersal of several organic pollutants can lead to the development of several mutated forms of the species when exposed to sublethal concentrations of the pollutants. Otherwise, a decrease in number or extinction of these exposed species from earth's face may happen. Pesticides, we use for the benefit of crop yield, but its persistence may become havoc to non-target organism. Pesticides reaching a reservoir can subsequently enter the higher trophic levels. Organophosphorus compounds have replaced all other pesticides, due to its acute toxicity and non-persistent nature.Hence the present study has concentrated on the toxicity of the largest market-selling and multipurpose pesticide, chlorpyrifos on the commonly edible aquatic organism, fish. The euryhaline cichlid Oreochromis mossambicus was selected as animal model. The study has concentrated on investigating biochemical parameters like tissue-specific enzymes, antioxidant and lipid-peroxidation parameters, haematological and histological observations and pesticide residue analysis.Major findings of this work have indicated the possibility of aquatic toxicity to the fish on exposure to the insecticide chlorpyrifos. The insecticide was found as effective to induce structural alteration, depletion in protein content, decrease in different metabolic enzyme levels and to progress lipid peroxidation on a prolonged exposure of 21 days. The ion-transport mechanism was found to be adversely affected. Electrophoretic analysis revealed the disappearance of several protein bands after 21days of exposure to chlorpyrifos. Residue, analysis by gas chromatography explored the levels of chlorpyrifos retaining on the edible tissue portions during exposure period of 21days and also on a recovery period of 10 days.
Resumo:
This paper reviews the use of plant extracts as vegetable coagulants for cheesemaking. It covers the plants used as sources of coagulants, with a historical overview and particular emphasis on Cynara species. The genus Cynara L., its composition, milk clotting and proteolytic enzymes (cardosins) and their specificity towards peptide linkages are also described. Cheeses produced in the Iberian Peninsula using Cynara L. as coagulant are documented. Cynara L. is still the most used vegetable coagulant in cheesemaking, and also the most investigated. However, much work remains to be done to understand its action during cheese maturation and further characterization.
Resumo:
Studies in human, animal and cellular systems suggest that phenols from virgin olive oil are capable of inhibiting several stages in carcinogenesis, including metastasis. The invasion cascade comprises cell attachment to extracellular matrix components or basement membrane, degradation of basement membrane by proteolytic enzymes and migration of cells through the modified matrix. In the present study, we investigated the effect of phenolics extracted from virgin olive oil (OVP) and its main constituents: hydroxytyrosol (3,4-dihydroxyphenylethanol), tyrosol (p-hydroxyphenylethanol), pinoresinol and caffeic acid. The effects of these phenolics were tested on the invasion of HT115 human colon carcinoma cells in a Matrigel invasion assay. OVP and its compounds showed different dose-related anti-invasive effects. At 25 mu g/ml OVP and equivalent doses of individual compounds, significant anti-invasive effects were seen in the range of 45-55% of control. Importantly, OVP, but not the isolated phenolics, significantly reduced total cell number in the Matrigel invasion assay. There were no significant effects shown on cell viability, indicating the reduction of cell number in the Matrigel invasion assay was not due to cytotoxicity. There were also no significant effects on cell attachment to plastic substrate, indicating the importance of extracellular matrix in modulating the anti-invasive effects of OVP. In conclusion, the results from this study indicate that phenols from virgin olive oil have the ability to inhibit invasion of colon cancer cells and the effects may be mediated at different levels of the invasion cascade. (c) 2007 Wiley-Liss, Inc.
Resumo:
Proteolytic enzymes comprise approximately 2 percent of the human genome [1]. Given their abundance, it is not surprising that proteases have diverse biological functions, ranging from the degradation of proteins in lysosomes to the control of physiological processes such as the coagulation cascade. However, a subset of serine proteases (possessing serine residues within their catalytic sites), which may be soluble in the extracellular fluid or tethered to the plasma membrane, are signaling molecules that can specifically regulate cells by cleaving protease-activated receptors (PARs), a family of four G-protein-coupled receptors (GPCRs). These serine proteases include members of the coagulation cascade (e.g., thrombin, factor VIIa, and factor Xa), proteases from inflammatory cells (e.g., mast cell tryptase, neutrophil cathepsin G), and proteases from epithelial tissues and neurons (e.g., trypsins). They are often generated or released during injury and inflammation, and they cleave PARs on multiple cell types, including platelets, endothelial and epithelial cells, myocytes, fibroblasts, and cells of the nervous system. Activated PARs regulate many essential physiological processes, such as hemostasis, inflammation, pain, and healing. These proteases and their receptors have been implicated in human disease and are potentially important targets for therapy. Proteases and PARs participate in regulating most organ systems and are the subject of several comprehensive reviews [2, 3]. Within the central and peripheral nervous systems, proteases and PARs can control neuronal and astrocyte survival, proliferation and morphology, release of neurotransmitters, and the function and activity of ion channels, topics that have also been comprehensively reviewed [4, 5]. This chapter specifically concerns the ability of PARs to regulate TRPV channels of sensory neurons and thereby affect neurogenic inflammation and pain transmission [6, 7].
Resumo:
Although Trypanosoma theileri and allied trypanosomes are the most widespread trypanosomes in bovids little is known about proteolytic enzymes in these species. We have characterized genes encoding for cathepsin L-like (CATL) cysteine proteases from isolates of cattle, water buffalo and deer that largely diverged from homologues of other trypanosome species. Analysis of 78 CATL catalytic domain sequences from 22 T. theileri trypanosomes disclosed 6 genotypes tightly clustered together into the T. theileri clade. The CATL genes in these trypanosomes are organized in tandem arrays of similar to 1.7 kb located in 2 chromosomal bands of 600-720 kb. A diagnostic PCR assay targeting CATL sequences detected T. theileri of all genotypes from cattle, buffaloes and cervids and also from tabanid vectors. Expression of T. theileri cysteine proteases was demonstrated by proteolytic activity in gelatin gels and hydrolysis of Z-Phe-Arg-AMC substrate. Results from this work agree with previous data using ribosomal and spliced leader genes demonstrating that CATL gene sequences are useful for diagnosis, population genotyping and evolutionary studies of T. theileri trypanosomes. (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The conidia-mycelia transformation is an essential step during the life cycle of the fungal human pathogens of the Pseudallescheria boydii complex. In the present study, we have analyzed the protein and peptidase profiles in two distinct morphological stages, conidia and mycelia, of Scedosporium apiospermum sensu stricto. Proteins synthesized by the mycelia, migrating at the ranges of 62-48 and 22-18 kDa, were not detected from the conidial extract. Conidia produced a single cellular peptidase of 28 kDa able to digest copolymerized albumin, while mycelia yielded 6 distinct peptidases ranging from 90 to 28 kDa. All proteolytic enzymes were active at acidic pH and fully inhibited by 1,10-phenanthroline, characterizing these activities as metallo-type peptidases. Quantitative peptidase assay, using soluble albumin, showed a high metallopeptidase production in mycelial cells in comparison with conidia. The regulated expression of proteins and peptidases in different morphological stages of S. apiospermum represents a potential target for isolation of stage-specific markers for biochemical and immunological analysis.
Resumo:
Sunflower trypsin inhibitor-1 (SFI-1), a natural 14-residue cyclic peptide, and some of its synthetic acyclic variants are potent protease inhibitors displaying peculiar inhibitory profiles. Here we describe the synthesis and use of affinity sorbents prepared by coupling SFTI-1 analogues to agarose resin. Chymotrypsinand trypsin-like proteases could then be selectively isolated from pancreatin; similarly, other proteases were obtained from distinct biological sources. The binding capacity of [Lys5]-SFTI-1-agarose for trypsin was estimated at over 10 mg/mL of packed gel. SFTI-1-based resins could find application either to improve the performance of current purification protocols or as novel protease-discovery tools in different areas of biological investigation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Introdução: a incidência dos melanomas permanece em ascensão em diversos países. Os nevos melanocíticos podem ser seus precursores ou marcadores de risco. A radiação ultravioleta é o principal fator de risco ambiental para o seu desenvolvimento. Estudos com nevos irradiados mostram que a radiação ultravioleta B (UVB) pode causar alterações morfológicas e bioquímicas semelhantes às de um melanoma in situ. As metaloproteinases da matriz (MMP) são enzimas proteolíticas e, particularmente, as MMP-2 e –9 (gelatinases A e B) parecem estar associadas à invasão tumoral, à formação de metástases e de neoangiogênese em melanomas. O objetivo do presente estudo é avaliar os efeitos da UVB nas expressões imunoistoquímicas de MMP-2 e –9 nas diferentes linhagens celulares de nevos melanocíticos. Métodos: quarenta e dois nevos melanocíticos tiveram suas metades irradiadas com dose de 2 DEM (dose eritematosa mínima) de UVB e foram excisados uma semana após. As expressões imunoistoquímicas das MMP-2 e -9 foram comparadas, quanto à sua intensidade, por três avaliadores diferentes entre os lados irradiados e não irradiados em queratinócitos, melanócitos de epiderme e derme superior, células endoteliais e fibroblastos. Os dados foram analisados pelo teste t pareado para as diferenças de expressão e pelo ICC para avaliação da homogeneidade entre as respostas dos observadores. Resultados: com relação à expressão imunoistoquímica de MMP-2, todas as linhagens celulares mostraram aumento no lado irradiado, especialmente os melanócitos epidérmicos. Quanto à MMP-9, somente nos queratinócitos, não se observou aumento de expressão do lado irradiado, ficando essa evidente nas demais linhagens celulares avaliadas. Conclusões: A UVB na dose de 2 DEM aumenta a expressão imunoistoquímica das MMP-2 e –9 em quase todas as linhagens celulares dos nevos melanocíticos avaliados até uma semana após a irradiação, com exceção feita queratinócitos, com a MMP-9.
Resumo:
Em anos recentes, surgiram numerosos casos de intoxicação alimentar envolvendo patógenos emergentes. Estes casos levaram a um aumento da preocupação com a preservação dos alimentos minimamente processados e com a segurança alimentar. Este fato está induzindo a pesquisa por inibidores para estes patógenos e fatores para prolongar a vida de prateleira de produtos alimentícios. Entre as novas alternativas na preservação está a utilização de peptídeos antimicrobianos produzidos por bactérias. No presente trabalho uma bactéria identificada como Bacillus amyloliquefaciens LBM 5006 isolada de solos de mata Atlântica de Santa Catarina foi selecionada dentre outros microrganismos e sua capacidade de produzir antimicrobianos foi avaliada. O extrato bruto da cultura do isolado LBM 5006 foi caracterizado, sendo ativo contra importantes bactérias patogênicas e deteriorantes como Listeria monocytogenes, Bacillus cereus, Erwinia carotovora, Escherichia coli, dentre outras. Houve maior produção do antimicrobiano quando a bactéria foi propagada em caldo infusão de cérebro e coração (BHI) a 37o C durante 48 h. Após concentração, a atividade antimicrobiana resistiu ao tratamento com enzimas proteolíticas. A atividade antimicrobiana foi verificada em pHs ácidos, sendo inibida em pH 9 e 10. O extrato foi purificado por meio de cromatografia de gel filtração e extração com butanol. O teste qualitativo de ninidrina, juntamente com a espectroscopia de infravermelho e ultravioleta, feitos com a substância purificada revelou que o antimicrobiano possui natureza protéica. O antimicrobiano apresentou um efeito bacteriostático contra 106 UFC/mL de Listeria monocytogenes na concentração de 25 AU/ml.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O cavalo, dado o seu meio ambiente, está sujeito a afecções frequentes da córnea e da conjuntiva, tecidos oculares bastante expostos a bactérias e fungos, principalmente Aspergillus spp. e Fusarium spp. As ceratites ulcerativas bacterianas e fúngicas, bem como as ceratites fúngicas não ulcerativas, caracterizadas principalmente pelo abscesso estromal, são frequentes nessa espécie. Ocorrida a lesão inicial, perpetua-se um ciclo vicioso, com liberação de citocinas inflamatórias, que desencadeiam uma rápida e severa infiltração corneal por células polimorfonucleares. A córnea torna-se sujeita à destruição por enzimas proteolíticas liberadas pelos micro-organismos e por células inflamatórias, capazes de desencadear a dissolução estromal e a perfuração do bulbo ocular. O tratamento clínico para a resolução da doença corneal e o controle da uveíte reflexa deve ser agressivo e associado, muitas das vezes, à terapia cirúrgica. Este artigo discorre sobre a fisiopatologia e o tratamento da ceratomicose em equinos.
Resumo:
Shrimp farming in Brazil is a consolidated activity, having brought economical and social gains to several states with the largest production concentrated in the northeast. This fact is also reflected in higher feed intake, necessitating a more efficient feed management. Currently, management techniques already foresee food loss due to molting. In this sense, studies relating shrimp s digestive physiology, molting physiology and behavioral response of shrimp feed can optimize the feed management. Thus, our study aimed to evaluate the behavioral response of the marine shrimp L. vannamei (Crustacea: Penaeidae) in accordance with the stages of moulting cycle and feeding schedules based on higher or lower activity of proteolytic digestive enzymes; also, to investigate the influence of feeding schedule on hepatosomatic index and non-specific and specific protease activity (trypsin). Experiments were carried out at the Laboratory of Shrimp Behavioral Studies at UFRN in partnership with the Laboratory of Enzimology UFPE. Juveniles of L. vannamei weighting 5.25 g (+ 0.25 g) were kept in aquaria at a density of 33 shrimp m -2. In the first experiment, shrimp were fed in the light phase or in the dark phase for 8 days; in the ninth day, the animals were observed for 15 minutes every hour during the 12 hours of each phase of the photoperiod. We recorded the frequency of inactivity, exploration, food intake, burrowing, swimming and crawling behavior. At the end of the 12th observation session, the shrimp were sacrified and classified by the method of setogenesis in the molt cycle stages A, B, C, D0, D1, D2 or D3. We found that the shrimp in A stage show high levels of inactivity. Moreover, the frequency of food intake was very low. The shrimp in D3 stage also had low food intake and high inactivity associated with elevated frequencies of burrowing. In the second experiment, shrimp were kept in physiological acclimation to experimental conditions for 28 days, distributed in 12 treatments in the light phase and 12 treatments in the dark phase. In the end, the animals were sacrified and dissected to assess non-specific and specific protease activity (trypsin) activity. In general, these parameters did not vary among animals fed in the light phase and those fed in the dark phase. However, significant differences were found in the activity of specific and nonspecific proteases in relation to food treatment. In the light phase, the major proteolytic activities converged to 10 hours after the start of the light phase, while the lowest activities converged to 6 hours after the beginning of this phase. In the dark phase, the highest enzyme activity converged to 12 hours after the onset of phase, while the lowest activities converged to 3 hours after the onset of phase. In the third experiment, we sought to evaluate the behavioral responses of shrimp in relation to dietary treatments based on higher or lower activity of proteolytic enzymes, considering the results of the second experiment. The behavioral categories observed were the same as the ones in the first experiment, with observations of 30 minutes (15min before and 15min after food supply). We found variation in behavioral responses as a function of the treatments, with greater intake of food in shrimp fed during the period of greatest activity of proteolytic enzymes, in the light phase. Thus we see that periodic events associated with the shrimp s physiology interfere in their behavioral responses, revealing situations that are more adjustable to the provision of food, and consequently optimizing feeding management
Resumo:
One of the major questions concerning Giardia is the understanding of pathophysiological processes associated with small intestine abnormalities. There are evidences that Giardia trophozoites contain and/or release proteolytic enzymes that may be implicated in the host intestinal epithelium. The present investigation was undertaken to examine the protease activity in excretory/secretory (E/S) products of Giardia duodenalis trophozoites of an axenic Brazilian strain (BTU-11) and the reference strain Portland 1 (P1). E/S products from trophozoites of each strain in conditioned medium were tested with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) for the protein profiles, and the protease activity was analyzed using substrate-impregnated SDS-PAGE (gelatin and collagen) and hemoglobin assay. The proteases characterization was based on inhibition assays including synthetic inhibitors. Electrophoresis analysis of E/S products revealed a banding pattern composed by few bands (4 to 6 bands) in the migration region of 123 to 28 kDa. Proteolytic products were detected in the conditioned medium by trophozoites of both assayed strains. In the gels containing copolymerized gelatin and collagen, E/S products promoted substrate degradation and the most evident proteolysis zones were distributed in the migration regions of 77 to 18 kDa and 145 to 18 kDa, respectively, in the patterns of gelatinolytic and collagenolytic activities. Degradation of hemoglobin was also observed, and the pattern of hydrolysis was similar in both E/S products assayed. Inhibitor assays showed that the main proteolytic activity in both E/S products is due to cysteine proteases, although the presence of serine proteases was also indicated. Degradation of substrates including collagen and hemoglobin could lead us to speculate different functions of Giardia excreted/secreted proteases in vivo, but to confirm this possibility and to elucidate its implication on host-parasite interactions, further experiments applying protocols for the purification of proteases are necessary. Even so, our observations are relevant and hold the perspective for the understanding about protease activity in Giardia trophozoites of axenic strain isolated in an endemic area.
Characterization of the excretory/secretory products of Dermatobia hominis larvae, the human bot fly
Resumo:
Proteolytic activity in excretory/secretory products (ESP) of first- (L1), second- (L2) and third-instar (L3) larvae of Dermatobia hominis was analyzed through gelatin-gel and colorimetric enzyme assays with the chromogenic substrates azocasein and BApNA. The functional characterization of proteases was based on inhibition assays including synthetic inhibitors. ESP were obtained from new-hatched larvae reared in the laboratory and from second- and third-instar larvae removed from naturally infested cattle. Gelatin-gel analysis evidenced few bands of proteolysis, predominantly of high apparent molecular masses, in ESP of L1, whereas in the gel of L2 and U ESP there was a wide range of proteolytic activity most of them not resolved in a single species. Azocasein assays revealed a progressive increase of protease activity from first- to third-instar larvae. Protease inhibitor assays revealed a predominance of metalloproteases in L1 ESP that could be related to a skin penetration process and to a diversion of host immune response. The predominance of serine proteases in L2 and L3 and the great tryptic activity presented by L3 ESP were attributed to an increasing trophic activity by the growing larvae, since the viability of adult flies strictly depends on larval abilities to assimilate nutrients from the host. Taking together, these results suggest that Dematobia larvae secrete/excrete different proteases that may be related to diverse functions during host penetration and infestation, which reinforces the relevance of the study of such proteolytic enzymes. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)